{-# LANGUAGE CPP #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE MultiParamTypeClasses #-} ----------------------------------------------------------------------------- -- | -- Module : Control.Lens.Internal.Indexed -- Copyright : (C) 2012-2015 Edward Kmett -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : experimental -- Portability : non-portable -- -- Internal implementation details for 'Indexed' lens-likes ---------------------------------------------------------------------------- module Control.Lens.Internal.Indexed ( -- * An Indexed Profunctor Indexed(..) -- * Classes , Conjoined(..) , Indexable(..) -- * Indexing , Indexing(..) , indexing -- * 64-bit Indexing , Indexing64(..) , indexing64 -- * Converting to Folds , withIndex , asIndex ) where import Control.Applicative import Control.Arrow as Arrow import Control.Category import Control.Comonad import Control.Lens.Internal.Instances () import qualified Control.Lens.Internal.Getter as Getter import Control.Monad import Control.Monad.Fix import Data.Distributive import Data.Functor.Bind import Data.Functor.Contravariant import Data.Int import Data.Profunctor import Data.Profunctor.Rep import Data.Profunctor.Sieve import Data.Traversable import Prelude hiding ((.),id) #ifndef SAFE import Data.Profunctor.Unsafe import Control.Lens.Internal.Coerce #endif ------------------------------------------------------------------------------ -- Conjoined ------------------------------------------------------------------------------ -- | This is a 'Profunctor' that is both 'Corepresentable' by @f@ and 'Representable' by @g@ such -- that @f@ is left adjoint to @g@. From this you can derive a lot of structure due -- to the preservation of limits and colimits. class ( Choice p, Corepresentable p, Comonad (Corep p), Traversable (Corep p) , Strong p, Representable p, Monad (Rep p), MonadFix (Rep p), Distributive (Rep p) , Costrong p, ArrowLoop p, ArrowApply p, ArrowChoice p ) => Conjoined p where -- | 'Conjoined' is strong enough to let us distribute every 'Conjoined' -- 'Profunctor' over every Haskell 'Functor'. This is effectively a -- generalization of 'fmap'. distrib :: Functor f => p a b -> p (f a) (f b) distrib = tabulate . collect . sieve {-# INLINE distrib #-} -- | This permits us to make a decision at an outermost point about whether or not we use an index. -- -- Ideally any use of this function should be done in such a way so that you compute the same answer, -- but this cannot be enforced at the type level. conjoined :: ((p ~ (->)) => q (a -> b) r) -> q (p a b) r -> q (p a b) r conjoined _ r = r {-# INLINE conjoined #-} instance Conjoined (->) where distrib = fmap {-# INLINE distrib #-} conjoined l _ = l {-# INLINE conjoined #-} ---------------------------------------------------------------------------- -- Indexable ---------------------------------------------------------------------------- -- | This class permits overloading of function application for things that -- also admit a notion of a key or index. class Conjoined p => Indexable i p where -- | Build a function from an 'indexed' function. indexed :: p a b -> i -> a -> b instance Indexable i (->) where indexed = const {-# INLINE indexed #-} ----------------------------------------------------------------------------- -- Indexed Internals ----------------------------------------------------------------------------- -- | A function with access to a index. This constructor may be useful when you need to store -- an 'Indexable' in a container to avoid @ImpredicativeTypes@. -- -- @index :: Indexed i a b -> i -> a -> b@ newtype Indexed i a b = Indexed { runIndexed :: i -> a -> b } instance Functor (Indexed i a) where fmap g (Indexed f) = Indexed $ \i a -> g (f i a) {-# INLINE fmap #-} instance Apply (Indexed i a) where Indexed f <.> Indexed g = Indexed $ \i a -> f i a (g i a) {-# INLINE (<.>) #-} instance Applicative (Indexed i a) where pure b = Indexed $ \_ _ -> b {-# INLINE pure #-} Indexed f <*> Indexed g = Indexed $ \i a -> f i a (g i a) {-# INLINE (<*>) #-} instance Bind (Indexed i a) where Indexed f >>- k = Indexed $ \i a -> runIndexed (k (f i a)) i a {-# INLINE (>>-) #-} instance Monad (Indexed i a) where return b = Indexed $ \_ _ -> b {-# INLINE return #-} Indexed f >>= k = Indexed $ \i a -> runIndexed (k (f i a)) i a {-# INLINE (>>=) #-} instance MonadFix (Indexed i a) where mfix f = Indexed $ \ i a -> let o = runIndexed (f o) i a in o {-# INLINE mfix #-} instance Profunctor (Indexed i) where dimap ab cd ibc = Indexed $ \i -> cd . runIndexed ibc i . ab {-# INLINE dimap #-} lmap ab ibc = Indexed $ \i -> runIndexed ibc i . ab {-# INLINE lmap #-} rmap bc iab = Indexed $ \i -> bc . runIndexed iab i {-# INLINE rmap #-} #ifndef SAFE ( .# ) ibc _ = coerce ibc {-# INLINE ( .# ) #-} ( #. ) _ = coerce' {-# INLINE ( #. ) #-} #endif instance Costrong (Indexed i) where unfirst (Indexed iadbd) = Indexed $ \i a -> let (b, d) = iadbd i (a, d) in b instance Sieve (Indexed i) ((->) i) where sieve = flip . runIndexed {-# INLINE sieve #-} instance Representable (Indexed i) where type Rep (Indexed i) = (->) i tabulate = Indexed . flip {-# INLINE tabulate #-} instance Cosieve (Indexed i) ((,) i) where cosieve = uncurry . runIndexed {-# INLINE cosieve #-} instance Corepresentable (Indexed i) where type Corep (Indexed i) = (,) i cotabulate = Indexed . curry {-# INLINE cotabulate #-} instance Choice (Indexed i) where right' = right {-# INLINE right' #-} instance Strong (Indexed i) where second' = second {-# INLINE second' #-} instance Category (Indexed i) where id = Indexed (const id) {-# INLINE id #-} Indexed f . Indexed g = Indexed $ \i -> f i . g i {-# INLINE (.) #-} instance Arrow (Indexed i) where arr f = Indexed (\_ -> f) {-# INLINE arr #-} first f = Indexed (Arrow.first . runIndexed f) {-# INLINE first #-} second f = Indexed (Arrow.second . runIndexed f) {-# INLINE second #-} Indexed f *** Indexed g = Indexed $ \i -> f i *** g i {-# INLINE (***) #-} Indexed f &&& Indexed g = Indexed $ \i -> f i &&& g i {-# INLINE (&&&) #-} instance ArrowChoice (Indexed i) where left f = Indexed (left . runIndexed f) {-# INLINE left #-} right f = Indexed (right . runIndexed f) {-# INLINE right #-} Indexed f +++ Indexed g = Indexed $ \i -> f i +++ g i {-# INLINE (+++) #-} Indexed f ||| Indexed g = Indexed $ \i -> f i ||| g i {-# INLINE (|||) #-} instance ArrowApply (Indexed i) where app = Indexed $ \ i (f, b) -> runIndexed f i b {-# INLINE app #-} instance ArrowLoop (Indexed i) where loop (Indexed f) = Indexed $ \i b -> let (c,d) = f i (b, d) in c {-# INLINE loop #-} instance Conjoined (Indexed i) where distrib (Indexed iab) = Indexed $ \i fa -> iab i <$> fa {-# INLINE distrib #-} instance i ~ j => Indexable i (Indexed j) where indexed = runIndexed {-# INLINE indexed #-} ------------------------------------------------------------------------------ -- Indexing ------------------------------------------------------------------------------ -- | 'Applicative' composition of @'Control.Monad.Trans.State.Lazy.State' 'Int'@ with a 'Functor', used -- by 'Control.Lens.Indexed.indexed'. newtype Indexing f a = Indexing { runIndexing :: Int -> (Int, f a) } instance Functor f => Functor (Indexing f) where fmap f (Indexing m) = Indexing $ \i -> case m i of (j, x) -> (j, fmap f x) {-# INLINE fmap #-} instance Apply f => Apply (Indexing f) where Indexing mf <.> Indexing ma = Indexing $ \i -> case mf i of (j, ff) -> case ma j of ~(k, fa) -> (k, ff <.> fa) {-# INLINE (<.>) #-} instance Applicative f => Applicative (Indexing f) where pure x = Indexing $ \i -> (i, pure x) {-# INLINE pure #-} Indexing mf <*> Indexing ma = Indexing $ \i -> case mf i of (j, ff) -> case ma j of ~(k, fa) -> (k, ff <*> fa) {-# INLINE (<*>) #-} instance Contravariant f => Contravariant (Indexing f) where contramap f (Indexing m) = Indexing $ \i -> case m i of (j, ff) -> (j, contramap f ff) {-# INLINE contramap #-} -- | Transform a 'Control.Lens.Traversal.Traversal' into an 'Control.Lens.Traversal.IndexedTraversal' or -- a 'Control.Lens.Fold.Fold' into an 'Control.Lens.Fold.IndexedFold', etc. -- -- @ -- 'indexing' :: 'Control.Lens.Type.Traversal' s t a b -> 'Control.Lens.Type.IndexedTraversal' 'Int' s t a b -- 'indexing' :: 'Control.Lens.Type.Prism' s t a b -> 'Control.Lens.Type.IndexedTraversal' 'Int' s t a b -- 'indexing' :: 'Control.Lens.Type.Lens' s t a b -> 'Control.Lens.Type.IndexedLens' 'Int' s t a b -- 'indexing' :: 'Control.Lens.Type.Iso' s t a b -> 'Control.Lens.Type.IndexedLens' 'Int' s t a b -- 'indexing' :: 'Control.Lens.Type.Fold' s a -> 'Control.Lens.Type.IndexedFold' 'Int' s a -- 'indexing' :: 'Control.Lens.Type.Getter' s a -> 'Control.Lens.Type.IndexedGetter' 'Int' s a -- @ -- -- @'indexing' :: 'Indexable' 'Int' p => 'Control.Lens.Type.LensLike' ('Indexing' f) s t a b -> 'Control.Lens.Type.Optical' p (->) f s t a b@ indexing :: Indexable Int p => ((a -> Indexing f b) -> s -> Indexing f t) -> p a (f b) -> s -> f t indexing l iafb s = snd $ runIndexing (l (\a -> Indexing (\i -> i `seq` (i + 1, indexed iafb i a))) s) 0 {-# INLINE indexing #-} ------------------------------------------------------------------------------ -- Indexing64 ------------------------------------------------------------------------------ -- | 'Applicative' composition of @'Control.Monad.Trans.State.Lazy.State' 'Int64'@ with a 'Functor', used -- by 'Control.Lens.Indexed.indexed64'. newtype Indexing64 f a = Indexing64 { runIndexing64 :: Int64 -> (Int64, f a) } instance Functor f => Functor (Indexing64 f) where fmap f (Indexing64 m) = Indexing64 $ \i -> case m i of (j, x) -> (j, fmap f x) {-# INLINE fmap #-} instance Apply f => Apply (Indexing64 f) where Indexing64 mf <.> Indexing64 ma = Indexing64 $ \i -> case mf i of (j, ff) -> case ma j of ~(k, fa) -> (k, ff <.> fa) {-# INLINE (<.>) #-} instance Applicative f => Applicative (Indexing64 f) where pure x = Indexing64 $ \i -> (i, pure x) {-# INLINE pure #-} Indexing64 mf <*> Indexing64 ma = Indexing64 $ \i -> case mf i of (j, ff) -> case ma j of ~(k, fa) -> (k, ff <*> fa) {-# INLINE (<*>) #-} instance Contravariant f => Contravariant (Indexing64 f) where contramap f (Indexing64 m) = Indexing64 $ \i -> case m i of (j, ff) -> (j, contramap f ff) {-# INLINE contramap #-} -- | Transform a 'Control.Lens.Traversal.Traversal' into an 'Control.Lens.Traversal.IndexedTraversal' or -- a 'Control.Lens.Fold.Fold' into an 'Control.Lens.Fold.IndexedFold', etc. -- -- This combinator is like 'indexing' except that it handles large traversals and folds gracefully. -- -- @ -- 'indexing64' :: 'Control.Lens.Type.Traversal' s t a b -> 'Control.Lens.Type.IndexedTraversal' 'Int64' s t a b -- 'indexing64' :: 'Control.Lens.Type.Prism' s t a b -> 'Control.Lens.Type.IndexedTraversal' 'Int64' s t a b -- 'indexing64' :: 'Control.Lens.Type.Lens' s t a b -> 'Control.Lens.Type.IndexedLens' 'Int64' s t a b -- 'indexing64' :: 'Control.Lens.Type.Iso' s t a b -> 'Control.Lens.Type.IndexedLens' 'Int64' s t a b -- 'indexing64' :: 'Control.Lens.Type.Fold' s a -> 'Control.Lens.Type.IndexedFold' 'Int64' s a -- 'indexing64' :: 'Control.Lens.Type.Getter' s a -> 'Control.Lens.Type.IndexedGetter' 'Int64' s a -- @ -- -- @'indexing64' :: 'Indexable' 'Int64' p => 'Control.Lens.Type.LensLike' ('Indexing64' f) s t a b -> 'Control.Lens.Type.Over' p f s t a b@ indexing64 :: Indexable Int64 p => ((a -> Indexing64 f b) -> s -> Indexing64 f t) -> p a (f b) -> s -> f t indexing64 l iafb s = snd $ runIndexing64 (l (\a -> Indexing64 (\i -> i `seq` (i + 1, indexed iafb i a))) s) 0 {-# INLINE indexing64 #-} ------------------------------------------------------------------------------- -- Converting to Folds ------------------------------------------------------------------------------- -- | Fold a container with indices returning both the indices and the values. -- -- The result is only valid to compose in a 'Traversal', if you don't edit the -- index as edits to the index have no effect. withIndex :: (Indexable i p, Functor f) => p (i, s) (f (j, t)) -> Indexed i s (f t) withIndex f = Indexed $ \i a -> snd <$> indexed f i (i, a) {-# INLINE withIndex #-} -- | When composed with an 'IndexedFold' or 'IndexedTraversal' this yields an -- ('Indexed') 'Fold' of the indices. asIndex :: (Indexable i p, Contravariant f, Functor f) => p i (f i) -> Indexed i s (f s) asIndex f = Indexed $ \i _ -> Getter.coerce (indexed f i i) {-# INLINE asIndex #-}