#ifdef TRUSTWORTHY
#endif
module Control.Lens.Internal.PrismTH
( makePrisms
, makeClassyPrisms
, makeDecPrisms
) where
import Control.Applicative
import Control.Lens.Getter
import Control.Lens.Internal.TH
import Control.Lens.Lens
import Control.Lens.Setter
import Control.Lens.Tuple
import Control.Monad
import Data.Char (isUpper)
import Data.List
import Data.Monoid
import Data.Set.Lens
import Data.Traversable
import Language.Haskell.TH
import Language.Haskell.TH.Lens
import qualified Data.Map as Map
import qualified Data.Set as Set
import Prelude
makePrisms :: Name -> DecsQ
makePrisms = makePrisms' True
makeClassyPrisms :: Name -> DecsQ
makeClassyPrisms = makePrisms' False
makePrisms' :: Bool -> Name -> DecsQ
makePrisms' normal typeName =
do info <- reify typeName
case info of
TyConI dec -> makeDecPrisms normal dec
_ -> fail "makePrisms: expected type constructor name"
makeDecPrisms :: Bool -> Dec -> DecsQ
makeDecPrisms normal dec = case dec of
DataD _ ty vars cons _ -> next ty (convertTVBs vars) cons
NewtypeD _ ty vars con _ -> next ty (convertTVBs vars) [con]
DataInstD _ ty tys cons _ -> next ty tys cons
NewtypeInstD _ ty tys con _ -> next ty tys [con]
_ -> fail "makePrisms: expected type constructor dec"
where
convertTVBs = map (VarT . bndrName)
next ty args cons =
makeConsPrisms (conAppsT ty args) (map normalizeCon cons) cls
where
cls | normal = Nothing
| otherwise = Just ty
makeConsPrisms :: Type -> [NCon] -> Maybe Name -> DecsQ
makeConsPrisms t [con@(NCon _ Nothing _)] Nothing = makeConIso t con
makeConsPrisms t cons Nothing =
fmap concat $ for cons $ \con ->
do let conName = view nconName con
stab <- computeOpticType t cons con
let n = prismName conName
sequenceA
[ sigD n (close (stabToType stab))
, valD (varP n) (normalB (makeConOpticExp stab cons con)) []
]
makeConsPrisms t cons (Just typeName) =
sequenceA
[ makeClassyPrismClass t className methodName cons
, makeClassyPrismInstance t className methodName cons
]
where
className = mkName ("As" ++ nameBase typeName)
methodName = prismName typeName
data OpticType = PrismType | ReviewType
data Stab = Stab Cxt OpticType Type Type Type Type
simplifyStab :: Stab -> Stab
simplifyStab (Stab cx ty _ t _ b) = Stab cx ty t t b b
stabSimple :: Stab -> Bool
stabSimple (Stab _ _ s t a b) = s == t && a == b
stabToType :: Stab -> Type
stabToType stab@(Stab cx ty s t a b) = ForallT vs cx $
case ty of
PrismType | stabSimple stab -> prism'TypeName `conAppsT` [t,b]
| otherwise -> prismTypeName `conAppsT` [s,t,a,b]
ReviewType -> reviewTypeName `conAppsT` [t,b]
where
vs = map PlainTV (Set.toList (setOf typeVars cx))
stabType :: Stab -> OpticType
stabType (Stab _ o _ _ _ _) = o
computeOpticType :: Type -> [NCon] -> NCon -> Q Stab
computeOpticType t cons con =
do let cons' = delete con cons
case view nconCxt con of
Just xs -> computeReviewType t xs (view nconTypes con)
Nothing -> computePrismType t cons' con
computeReviewType :: Type -> Cxt -> [Type] -> Q Stab
computeReviewType s' cx tys =
do let t = s'
s <- fmap VarT (newName "s")
a <- fmap VarT (newName "a")
b <- toTupleT (map return tys)
return (Stab cx ReviewType s t a b)
computePrismType :: Type -> [NCon] -> NCon -> Q Stab
computePrismType t cons con =
do let ts = view nconTypes con
unbound = setOf typeVars t Set.\\ setOf typeVars cons
sub <- sequenceA (fromSet (newName . nameBase) unbound)
b <- toTupleT (map return ts)
a <- toTupleT (map return (substTypeVars sub ts))
let s = substTypeVars sub t
return (Stab [] PrismType s t a b)
computeIsoType :: Type -> [Type] -> TypeQ
computeIsoType t' fields =
do sub <- sequenceA (fromSet (newName . nameBase) (setOf typeVars t'))
let t = return t'
s = return (substTypeVars sub t')
b = toTupleT (map return fields)
a = toTupleT (map return (substTypeVars sub fields))
#ifndef HLINT
ty | Map.null sub = appsT (conT iso'TypeName) [t,b]
| otherwise = appsT (conT isoTypeName) [s,t,a,b]
#endif
close =<< ty
makeConOpticExp :: Stab -> [NCon] -> NCon -> ExpQ
makeConOpticExp stab cons con =
case stabType stab of
PrismType -> makeConPrismExp stab cons con
ReviewType -> makeConReviewExp con
makeConIso :: Type -> NCon -> DecsQ
makeConIso s con =
do let ty = computeIsoType s (view nconTypes con)
defName = prismName (view nconName con)
sequenceA
[ sigD defName ty
, valD (varP defName) (normalB (makeConIsoExp con)) []
]
makeConPrismExp ::
Stab ->
[NCon] ->
NCon ->
ExpQ
makeConPrismExp stab cons con = appsE [varE prismValName, reviewer, remitter]
where
ts = view nconTypes con
fields = length ts
conName = view nconName con
reviewer = makeReviewer conName fields
remitter | stabSimple stab = makeSimpleRemitter conName fields
| otherwise = makeFullRemitter cons conName
makeConIsoExp :: NCon -> ExpQ
makeConIsoExp con = appsE [varE isoValName, remitter, reviewer]
where
conName = view nconName con
fields = length (view nconTypes con)
reviewer = makeReviewer conName fields
remitter = makeIsoRemitter conName fields
makeConReviewExp :: NCon -> ExpQ
makeConReviewExp con = appE (varE untoValName) reviewer
where
conName = view nconName con
fields = length (view nconTypes con)
reviewer = makeReviewer conName fields
makeReviewer :: Name -> Int -> ExpQ
makeReviewer conName fields =
do xs <- replicateM fields (newName "x")
lam1E (toTupleP (map varP xs))
(conE conName `appsE1` map varE xs)
makeSimpleRemitter :: Name -> Int -> ExpQ
makeSimpleRemitter conName fields =
do x <- newName "x"
xs <- replicateM fields (newName "y")
let matches =
[ match (conP conName (map varP xs))
(normalB (appE (conE rightDataName) (toTupleE (map varE xs))))
[]
, match wildP (normalB (appE (conE leftDataName) (varE x))) []
]
lam1E (varP x) (caseE (varE x) matches)
makeFullRemitter :: [NCon] -> Name -> ExpQ
makeFullRemitter cons target =
do x <- newName "x"
lam1E (varP x) (caseE (varE x) (map mkMatch cons))
where
mkMatch (NCon conName _ n) =
do xs <- replicateM (length n) (newName "y")
match (conP conName (map varP xs))
(normalB
(if conName == target
then appE (conE rightDataName) (toTupleE (map varE xs))
else appE (conE leftDataName) (conE conName `appsE1` map varE xs)))
[]
makeIsoRemitter :: Name -> Int -> ExpQ
makeIsoRemitter conName fields =
do xs <- replicateM fields (newName "x")
lam1E (conP conName (map varP xs))
(toTupleE (map varE xs))
makeClassyPrismClass ::
Type ->
Name ->
Name ->
[NCon] ->
DecQ
makeClassyPrismClass t className methodName cons =
do r <- newName "r"
#ifndef HLINT
let methodType = appsT (conT prism'TypeName) [varT r,return t]
#endif
methodss <- traverse (mkMethod (VarT r)) cons'
classD (cxt[]) className (map PlainTV (r : vs)) (fds r)
( sigD methodName methodType
: map return (concat methodss)
)
where
mkMethod r con =
do Stab cx o _ _ _ b <- computeOpticType t cons con
let stab' = Stab cx o r r b b
defName = view nconName con
body = appsE [varE composeValName, varE methodName, varE defName]
sequenceA
[ sigD defName (return (stabToType stab'))
, valD (varP defName) (normalB body) []
]
cons' = map (over nconName prismName) cons
vs = Set.toList (setOf typeVars t)
fds r
| null vs = []
| otherwise = [FunDep [r] vs]
makeClassyPrismInstance ::
Type ->
Name ->
Name ->
[NCon] ->
DecQ
makeClassyPrismInstance s className methodName cons =
do let vs = Set.toList (setOf typeVars s)
cls = className `conAppsT` (s : map VarT vs)
instanceD (cxt[]) (return cls)
( valD (varP methodName)
(normalB (varE idValName)) []
: [ do stab <- computeOpticType s cons con
let stab' = simplifyStab stab
valD (varP (prismName conName))
(normalB (makeConOpticExp stab' cons con)) []
| con <- cons
, let conName = view nconName con
]
)
data NCon = NCon
{ _nconName :: Name
, _nconCxt :: Maybe Cxt
, _nconTypes :: [Type]
}
deriving (Eq)
instance HasTypeVars NCon where
typeVarsEx s f (NCon x y z) = NCon x <$> typeVarsEx s f y <*> typeVarsEx s f z
nconName :: Lens' NCon Name
nconName f x = fmap (\y -> x {_nconName = y}) (f (_nconName x))
nconCxt :: Lens' NCon (Maybe Cxt)
nconCxt f x = fmap (\y -> x {_nconCxt = y}) (f (_nconCxt x))
nconTypes :: Lens' NCon [Type]
nconTypes f x = fmap (\y -> x {_nconTypes = y}) (f (_nconTypes x))
normalizeCon :: Con -> NCon
normalizeCon (RecC conName xs) = NCon conName Nothing (map (view _3) xs)
normalizeCon (NormalC conName xs) = NCon conName Nothing (map (view _2) xs)
normalizeCon (InfixC (_,x) conName (_,y)) = NCon conName Nothing [x,y]
normalizeCon (ForallC [] [] con) = normalizeCon con
normalizeCon (ForallC _ cx con) = NCon n (cx1 <> cx2) tys
where
cx1 = Just cx
NCon n cx2 tys = normalizeCon con
prismName :: Name -> Name
prismName n = case nameBase n of
[] -> error "prismName: empty name base?"
x:xs | isUpper x -> mkName ('_':x:xs)
| otherwise -> mkName ('.':x:xs)
close :: Type -> TypeQ
close t = forallT (map PlainTV (Set.toList vs)) (cxt[]) (return t)
where
vs = setOf typeVars t