Functional Reporting Edward Kmett

Getting FP in the Door

Monoids, Reducers, Iteratees, Performance Attribution

Ermine
"Haskell with Row Types"

Reporting
EDSL Inception and JMacro RPC

5 Open Source

Who We Are

2

Getting FP in the Door

Monoids, Reducers, Iteratees, Performance Attribution

3

Ermine

"Haskell with Row Types"

4

Reporting

EDSL Inception and JMacro RPC

 $\left(\begin{array}{c}5\end{array}\right)$

Open Source

INVE

Who We Are

Over 4,500 customers including

- Investment Management Firms
- Private Equity Funds
- Investment Banks
- Advisory Firms
- Corporations
- Universities

Products Include

- S&P Capital IQ Platform
- ClariFI
- AlphaWorks
- Compustat

Getting FP in the Door
Monoids, Reducers, Iteratees, Performance Attribution

Ermine
"Haskell with Row Types"

Reporting
EDSL Inception and JMacro RPC

5 Open Source

Getting FP in the Door

- Monoids
- Reducers
- Performance Attribution
- Factor Backtesting

Monoids

```
class Monoid m where
  mappend :: m -> m -> m
  mempty :: m

newtype Sum a = Sum { getSum :: a }
instance Num a => Monoid (Sum a) where
  mempty = Sum 0
  mappend (Sum m) (Sum n) = Sum (m + n)
```


Monoids

```
class Monoid m where
  mappend :: m -> m -> m
  mempty :: m
```

```
>>> foldMap Sum [1,2,3]
6
```


Reducers

```
class Monoid m where
  mappend :: m -> m -> m
  mempty :: m

data Reducer a b =
  forall m. Monoid m => R (a -> m) (m -> b)

reduce :: Reducer a b -> [a] -> b
  reduce (R am mb) xs = mb (foldMap am xs)
```

In practice you probably want an efficient cons and/or snoc operation as well.

Simultaneous Reduction

```
instance (Monoid a, Monoid b) => Monoid (a,b)
instance Applicative (Reducer a) where
  pure a = R (\_ -> ()) (\() -> a)
  R am mf <*> R an nx = R (am &&& an) $
    \(m,n) -> mf m $ nx n

mean = (/) <$> sum <*> length
```


Simultaneous Reduction

```
instance Num b => Num (Reducer a b)
instance Fractional b => Fractional (Reducer a b)
mean = sum / length
```

We can also reduce incrementally and in parallel

Performance Attribution

OLD AND BUSTED

- Implemented in Java
- Needed Full Dataset in Memory
- Hard to Extend
- Results are Serialized Objects

NEW HOTNESS

- Implemented in Scala
- Runs in Constant Memory
- Easily Extended
- Drastic Speed Improvements
- Results Flattened via
 Combinators to Database

Performance Attribution

OLD AND BUSTED

- Implemented in Java
- Needed Full Dataset in Memory
- Hard to Extend
- Results are Serialized Objects

GLOSSED OVER

- Multi-Pass Algorithms
- Iteratees
- Caching
- Aggregation by Sectors
- Missing Data

NEW HOTNESS

- Implemented in Scala
- Runs in Constant Memory
- Easily Extended
- Drastic Speed Improvements
- Results Flattened via
 Combinators to Database

Portfolio Attribution Report

Summary report for long/short portfolios

this report has been exported from a performance attribution workflow run in ModelStation from Clarifi

REPORT INFORMATION

General information about the Portfolio Attribution Report run in ModelStation and exported to create this workbook.

Portfolio Name Dow Long / Short

Benchmark 4 stock

Returns Attribution Beginning of period holdings

Risk Model Capital IQ Risk Model
Analysis Period 110/11/30 – 111/2/30

RETURNS

These statistics summarize the characteristics of the returns (losses) of the portfolio over the duration of the analysis perior ModelStation analysis, benchmark-relative statistics are also provided for the period.

BRINSON ATTRIBUTION

These charts and tables show the cumulative attribution of the Brinson effects. Periodic data is linked using Carino smoothi

Performance Attribution Demo

- Who We Are
- Getting FP in the Door

 Monoids, Reducers, Iteratees, Performance Attribution
- Ermine
 "Haskell with Row Types"
- Reporting
 EDSL Inception and JMacro RPC
- 5 Open Source

Ermine

Ermine

"Haskell with Row Types"

FEATURES

- Not Scala
- Portable Core that can run on the JVM
- Implementations in Scala and Haskell
- Strong Type System
 - Novel Row Types
 - Polymorphic and Constraint Kinds
 - Rank-N Types via a derivative of HMF
- Fits our Domain
 - Built-In Database Support
 - Can Be Exposed to End Users
 - Prototype Structured Code Editor
 - Full Control Over Error Messages

It actually has many differences with Haskell.

Row Polymorphism

PREVIOUS APPROACHES

Commonly row polymorphism is modeled via has, lacks, and/or subsumes constraints.

```
cons<sub>1</sub>: \forall (a : *) (r : \rho). (r / 1) \Rightarrow \alpha \rightarrow [..r] \rightarrow \{1 : \alpha | r\}

tail<sub>1</sub>: \forall (\alpha : *) (r : \rho). (r / 1) \Rightarrow \{1 : \alpha | r\} \rightarrow \{r\}

join: \forall (r : \rho) (s : \rho). [..r] \rightarrow [..s] \rightarrow [..r | | s]
```

This is easily checked, but now **inference** flows unidirectionally through join.

Row Polymorphism

IN ERMINE

We use a single constraint type: "can be partitioned into"

$$a \leftarrow (b,c)$$

says the fields in row type a can be partitioned into **disjoint** sets of fields b and c.

```
join:
(d \leftarrow (a,b))
, e \leftarrow (b,c)
, f \leftarrow (a,b,c)
) \Rightarrow [..d] \rightarrow [..e] \rightarrow [..f]
```


Row Polymorphism

IN ERMINE

We can have existentials in our constraint types. E.g.

```
forget : MonadState s m \Rightarrow m a \rightarrow m a forget m = do s \leftarrow get; a \leftarrow m; put s; return a
```

has type parameters that don't occur on the right hand side of the (⇒) determined by functional dependencies. We could give this type:

```
forget : (\exists s. MonadState s m) \Rightarrow m a -> m a
```

Using this we can model "Has" and "Lacks" or "Disjoint" via type aliases!

```
type Has a b = \exists c. a \leftarrow (b, c)
type a | b = \exists c. c \leftarrow (a, b)
```


Getting FP in the Door

Monoids, Reducers, Iteratees, Performance Attribution

Ermine
"Haskell with Row Types"

Reporting
EDSL Inception and JMacro RPC

5 Open Source

Reporting A Language in our Language

Portfolio Information	1										
Portfolio Name	big portfolio				Date Range		4/30/2012 to 4/30/2013				
Portfolio ID	-				Currency		US Dollar (USD)				
Benchmark	Russell Top 50	Index (^RTF))		Grouping		GICS Industry				
Risk Model	Global Fundam				Exclude Cash		No				
Portfolio Overview				Portfolio Return Chart			Portfolio Characteris	tics			
	Port	Bench	Active							Port	Bench
Total Return	28.98	14.37	14.61	35 big portfolio		~	Market Capitalization		204		192,445.11
Realized Risk	16.29	12.28	10.59	25 - Russell Top 50 Index (*RTF)	المسمالية	Ay Just	P/E			11.56	15.55
Latest Predicted Risk	12.99	8.69	9.44	20 -	. n	- '	P/BV			2.80	3.88
-Factor Risk	9.79	8.33	4.19	8 10 10 10 10 10 10 10 10 10 10 10 10 10		Jane VV	P/Sales			3.61	2,59
-Stock Specific Risk	8.54	2,47	8.46	(%) 10	The same	~	Div Yield			2.79	2.67
Portfolio Value(\$mm)	0.15	-	-	& 0 -5	0		Return on Equity %			16.79	32.32
# of Securities	17	52	-	-10			Total Debt/Equity			102.27	624.19
Annualized Total Return	28.98	14.37	14.61				Forward P/E			13.01	13.63
				May-01-2012 Jul-31-2012 Oc	t-30-2012 Jan-29-201	3 Apr-30-20	EPS 3 Yr CAGR %			28.36	14.04
Industry Weight			1	Industry Weight Chart			Industry Attribution				
	Port	Bench	Active	, ,		-		lloc Eff Sel	ec Eff	Inter Eff	Total Eff
Internet Software and Ser		3.23	51.88				Internet Software and	8.54	0.12	2.23	
Automobiles	12.98	0.00	12.98				Automobiles	1.78	-0.05	-1.15	0.58
Capital Markets	11.40	0.00	11.40				Capital Markets	1.59	0.02	0.18	1.79
Pharmaceuticals	5.70	10.54	-4.84		\		Pharmaceuticals	-0.65	0.33	-0.17	-0.49
Food Products	4.78	1.24	3.54				Food Products	0.41	-0.04	-0.20	0.17
Diversified Financial Serv	3.28	6.55	-3.27				Diversified Financial	-0.54	-0.82	0.33	-1.03
Commercial Services and	1.51	0.00	1.51				Commercial Services	-0.34	0.00	0.00	-0.34
Electric Utilities	1.50	0.00	1.50				Electric Utilities	-0.01	0.00	0.00	-0.01
Industrial Conglomerates	1.49	4.43	-2.94				Industrial Conglomer	-0.11	-0.02	0.01	-0.12
Trading Companies and D	0.83	0.00	0.83				Trading Companies a	-0.28	0.00	0.00	-0.28
Biotechnology	0.71	1.16	-0.46				Other	3.80	1.02	-1.37	3.45
Other	0.73	72.85	-72.12				Total	14.18	0.56	-0.13	14.61
Security Weight				Security Contribution Ch	art		Security Contributio	n			
Top 10	Port	Bench	Active	60			Top 5	Avg W	gt	Return	Contr
Google Inc. (NasdaqGS:GO	55.11	3.06	52.05			•	Google Inc. (NasdaqGS:G	. 53.	86	36.33	19.16
Volkswagen AG (DB:VOW)	12.98	0.00	12.98	50		•	Volkswagen AG (DB:VOW)	14.	17	16.33	2.78
The Goldman Sachs Group,	. 9.76	0.00	9.76	⊋ 40			The Goldman Sachs Grou	. 9.	33	28.98	2.53
Johnson & Johnson (NYSE:J	. 5.70	3.36	2.34	8			Johnson & Johnson (NYS	5.	53	35.63	1.92
Nestlé S.A. (SWX:NESN)	4.78	0.00	4.78	Neight 30			Nestlé S.A. (SWX:NESN)	5.	01	20.34	1.02
JPMorgan Chase & Co. (NY	3.28	2.68	0.60	≥ 20			Bottom 5	Avg W	gt	Return	Contr
ABM Industries Incorporat	1.51	0.00	1.51	2.0			ABM Industries Incorpor	1.	59	-0.25	-0.18
Electricite de France SA (E	1.50	0.00	1.50	10			Sumitomo Corporation (T	1.	03	-9.04	-0.14
General Electric Company (1.49	3.39	-1.90				Gefran SpA (BIT:GE)	0.	28	-24.41	-0.12
Gluskin Sheff + Associates,	1.18	0.00	1.18	0 5	10 15	20 2	Granville Pacific Capital	0.	01	-3.91	0.00
Total	97.28	12.49	84.79		to Return (%)		Advanced Power Compon	. 0.	02	241.45	0.03

Reporting Example

One Report

Multiple Interpreters

The same report specification can run under wildly different interpreters. E.g.

- HTML + AJAX
- Excel
- PDF
- Java Swing

Getting FP in the Door
Monoids, Reducers, Iteratees, Performance Attribution

Ermine
"Haskell with Row Types"

Reporting
EDSL Inception and JMacro RPC

5 Open Source

Open Source

SCALA VERSION

https://github.com/ermine-language/ermine-legacy

HASKELL VERSION

https://github.com/ermine-language/ermine

NEW CORE INTERPRETER

https://github.com/ermine-language/ermine-scala-core

JMACRO-RPC

http://patch-tag.com/r/gershomb/jmacro-rpc

Questions?