
INTRODUCTION TO MONOIDS

Edward Kmett

Overview

 Monoids (definition, examples)

 Reducers

 Generators

 Benefits of Monoidal Parsing
 Incremental Parsing (FingerTrees)

 Parallel Parsing (Associativity)

 Composing Parsers (Products, Layering)

 Compressive Parsing (LZ78, Bentley-McIlroy)

 Going Deeper (Seminearrings)

What is a Monoid?

 A Monoid is any associative binary operation
with a unit.

 Associative: (a + b) + c = a + (b + c)

 Unit: (a + 0) = a = (0 + a)

 Examples:
 ((*),1), ((+),0), (max, minBound),

((.),id), ...

Monoids as a Typeclass

class Monoid m where

mempty :: m

mappend :: m -> m -> m

mconcat :: [m] -> m

mconcat = foldr mappend mempty

Built-in Monoids

newtype Sum a = Sum a

instance Num a => Monoid (Sum a) where

mempty = Sum 0

Sum a `mappend` Sum b = Sum (a + b)

newtype Endo a = Endo (a -> a)

instance Monoid (Endo a) where

mempty = Endo id

Endo f `mappend` Endo g = Endo (f . g)

So how can we use them?

 Data.Foldable provides fold and foldMap

class Functor t => Foldable t where

...

fold :: Monoid m => t m -> m

foldMap :: Monoid m => (a -> m) -> t a -> m

fold = foldMap id

Monoids are Compositional

instance (Monoid m, Monoid n) => Monoid (m,n) where

mempty = (mempty,mempty)

(a,b) `mappend` (c,d) = (a `mappend` c, b `mappend` d)

Associativity is Flexibility

We can:

 foldr: a+(b+(c+...))

 foldl: ((a+b)+c)+ ...

 or even consume chunks in parallel:

(.+.+.+.+.+.)+(.+.+.+.+.+.)+(.+.+.+.+.+)+...

 or in a tree like fashion:

((.+.)+(.+.))+((.+.)+(.+0))

 ...

But we always pay full price

 Containers are Monoid-oblivious

 Monoids are Container-oblivious

Can we fix that and admit optimized folds?

(:) is faster than (\x xs -> return x ++ xs)

And what about monotypic containers?

Strict and Lazy ByteStrings, IntSets, etc...

Monoid-specific efficient folds

class Monoid m => Reducer c m where

unit :: c -> m

snoc :: m -> c -> m

cons :: c -> m -> m

c `cons` m = unit c `mappend` m

m `snoc` c = m `mappend` unit c

Simple Reducers

instance Reducer a [a] where

unit a = [a]

cons = (:)

instance Num a => Reducer a (Sum a) where

unit = Sum

instance Reducer (a -> a) (Endo a) where

unit = Endo

Reducers enable faster folds

reduceList :: (c `Reducer` m) => [c] -> m

reduceList = foldr cons mempty

reduceText :: (Char `Reducer` m) => Text -> m

reduceText = Text.foldl’ snoc mempty

Non-Functorial Containers

class Generator c where

type Elem c :: *

mapReduce :: (e `Reducer` m) => (Elem c -> e) -> c -> m

...

reduce :: (Generator c, Elem c `Reducer` m) => c -> m

reduce = mapReduce id

instance Generator [a] where

type Elem [a] = a

mapReduce f = foldr (cons . f) mempty

Container-Specific Folds

instance Generator Strict.ByteString where

type Elem Strict.ByteString = Word8

mapReduce f = Strict.foldl’ (\a b -> snoc a (f b)) mempty

instance Generator IntSet where

type Elem IntSet = Int

mapReduce f = mapReduce f . IntSet.toList

instance Generator (Set a) where

type Elem (Set a) = a

mapReduce f = mapReduce f . Set.toList

Parallel ByteString Reduction

instance Generator Lazy.ByteString where

mapReduce f =

Data.Foldable.fold .

parMap rwhnf (mapReduce f) .

Lazy.toChunks

Non-Trivial Monoids/Reducers

 Tracking Accumulated File Position Info

 FingerTree Concatenation

 Delimiting Words

 Parsing UTF8 Bytes into Chars

 Parsing Regular Expressions

 Recognizing Haskell Layout

 Parsing attributed PEG, CFG, and TAGs!

Generator Combinators

mapM_ :: (Generator c, Monad m) => (Elem c -> m b) -> c -> m ()

forM_ :: (Generator c, Monad m) => c -> (Elem c -> m b) -> m ()

msum :: (Generator c, MonadPlus m, m a ~ Elem c) => c -> m a

traverse_ :: (Generator c, Applicative f) => (Elem c -> f b) -> c -> f ()

for_ :: (Generator c, Applicative f) => c -> (Elem c -> f b) -> f ()

asum :: (Generator c, Alternative f, f a ~ Elem c) => c -> f a

and :: (Generator c, Elem c ~ Bool) => c -> Bool

or :: (Generator c, Elem c ~ Bool) => c -> Bool

any :: Generator c => (Elem c -> Bool) -> c -> Bool

all :: Generator c => (Elem c -> Bool) -> c -> Bool

foldMap :: (Monoid m, Generator c) => (Elem c -> m) -> c -> m

fold :: (Monoid m, Generator c, Elem c ~ m) => c -> m

toList :: Generator c => c -> [Elem c]

concatMap :: Generator c => (Elem c -> [b]) -> c -> [b]

elem :: (Generator c, Eq (Elem c)) => Elem c -> c -> Bool

filter :: (Generator c, Reducer (Elem c) m) => (Elem c -> Bool) -> c -> m

filterWith :: (Generator c, Reducer (Elem c) m) => (m -> n) -> (Elem c -> Bool) -> c -> n

find :: Generator c => (Elem c -> Bool) -> c -> Maybe (Elem c)

sum :: (Generator c, Num (Elem c)) => c -> Elem c

product :: (Generator c, Num (Elem c)) => c -> Elem c

notElem :: (Generator c, Eq (Elem c)) => Elem c -> c -> Bool

Generator Combinators

 Most generator combinators just use mapReduce or reduce
on an appropriate monoid.

reduceWith f = f . reduce

mapReduceWith f g = f . mapReduce g

sum = reduceWith getSum

and = reduceWith getAll

any = mapReduceWith getAny

toList = reduce

mapM_ = mapReduceWith getAction

...

Example: File Position Delta

 We track the delta of column #s

data Delta = Cols Int | ...

instance Monoid Delta where

mempty = Cols 0

Cols x `mappend` Cols y = Cols (x + y)

instance Reducer Delta Char where

unit _ = Cols 1

-- but what about newlines?

Handling Newlines

 After newline, preceding columns are useless, and we know an absolute column #

data Delta = Cols Int | Lines Int Int | ...

instance Monoid Delta where

Lines l _ `mappend` Lines l’ c’ = Lines (l + l’) c’

Cols _ `mappend` Lines l’ c’ = Lines l c’

Lines l c `mappend` Cols c’ = Lines l (c + c’)

...

instance Reducer Delta where

unit ‘\n’ = Lines 1 1

unit _ = Cols 1

 but what about tabs?

Handling Tabs

data Delta = Cols Int | Lines Int Int | Tabs Int Int | ...

nextTab :: Int -> Int

nextTab !x = x + (8 – (x – 1) `mod` 8)

instance Monoid Delta where

...

Lines l c `mappend` Tab x y = Lines l (nextTab (c + x) + y)

Tab{} `mappend` l@Lines{} = l

Cols x `mappend` Tab x’ y = Tab (x + x’) y

Tab x y `mappend` Cols y’ = Tab x (y + y’)

Tab x y `mappend` Tab x’ y’ = Tab x (nextTab (y + x’) + y’)

instance Reducer Char Delta where

unit ‘\t’ = Tab 0 0

unit ‘\n’ = Line 1 1

unit _ = Cols 1

#line Directives

data Delta =

= Pos !ByteString !Int !Int

| Line !Int !Int

| Col !Int

| Tab !Int !Int

Delta

instance Monoid Delta where

mempty = Cols 0

Cols c `mappend` Cols d = Cols (c + d)

Cols c `mappend` Tab x y = Tab (c + x) y

Lines l c `mappend` Cols d = Lines l (c + d)

Lines l _ `mappend` Lines m d = Lines (l + m) d

Lines l c `mappend` Tab x y = Lines l (nextTab (c + x) + y)

Tab x y `mappend` Cols d = Tab x (y + d)

Tab x y `mappend` Tab x' y' = Tab x (nextTab (y + x') + y')

Pos f l _ `mappend` Lines m d = Pos f (l + m) d

Pos f l c `mappend` Cols d = Pos f l (c + d)

Pos f l c `mappend` Tab x y = Pos f l (nextTab (c + x) + y)

_ `mappend` other = other

data Delta
= Pos S.ByteString !Int !Int
| Lines !Int !Int
| Tab !Int !Int
| Cols !Int
deriving (Eq,Show,Data,Typeable)

nextTab :: Int -> Int
nextTab x = x + (8 - x `mod` 8)

instance Reducer Char Delta where
unit '\n' = Lines 1 1
unit '\t' = Tab 0 0
unit _ = Cols 1

Example: Parsing UTF8

 Valid UTF8 encoded Chars have the form:

 [0x00...0x7F]

 [0xC0...0xDF] extra

 [0xE0...0xEF] extra extra

 [0xF0...0xF4] extra extra extra

 where extra = [0x80...0xBF] contains 6 bits of info
in the LSBs and the only valid representation is
the shortest one for each symbol.

UTF8 as a Reducer Transformer

data UTF8 m = Segment !Prefix m !Suffix | Chunk !Suffix

instance (Char `Reducer` m) => Monoid (UTF8 m)

where ...

instance (Char `Reducer` m) => (Byte `Reducer` UTF8 m)
where ...

Given 7 bytes we must have seen a full Char.

We only need track up to 3 bytes on either side.

Putting the pieces together so
far

We can:

 Parse a file as a Lazy ByteString,

 Ignore alignment of the chunks and parse
UTF8, automatically cleaning up the ends as
needed when we glue the reductions of our
chunks together.

 We can feed that into a complicated Char
`Reducer` that uses modular components like
Delta.

Compressive Parsing

 LZ78 decompression never compares values in
the dictionary. Decompress in the monoid,
caching the results.

 Unlike later refinements (LZW, LZSS, etc.) LZ78
doesn’t require every value to initialize the
dictionary permitting infinite alphabets (i.e.
Integers)

 We can compress chunkwise, permitting
parallelism

 Decompression fits on a slide.

Compressive Parsing

newtype LZ78 a = LZ78 [Token a]

data Token a = Token a !Int

instance Generator (LZ78 a) where

type Elem (LZ78 a) = a

mapTo f m (LZ78 xs) = mapTo’ f m (Seq.singleton mempty) xs

mapTo' :: (e `Reducer` m) => (a -> e) -> m -> Seq m -> [Token a] -> m

mapTo' _ m _ [] = m

mapTo' f m s (Token c w:ws) = m `mappend` mapTo' f v (s |> v) ws

where v = Seq.index s w `snoc` f c

Other Compressive Parsers

 The dictionary size in the previous example
can be bounded, so we can provide reuse of
common monoids up to a given size or within
a given window.

 Other extensions to LZW (i.e. LZAP) can be
adapted to LZ78, and work even better over
monoids than normal!

 Bentley-McIlroy (the basis of bmdiff and
open-vcdiff) can be used to reuse all common
submonoids over a given size.

Going Deeper

Algebraic Structure Provides Opportunity

Structure Example Opportunity

Semigroup Parallelized Folds

Monoid Unit

Group Inverses/Undo

Commutative Monoid Reordering Computation

Applicative Synthesized Attributes

Abelian Group Out-Of-Order Undo

Ringoid Cancellative Zero

Right Seminearring Context-Free Recognizers

Alternative Context-Free Attribute Grammars

Monad Context-Sensitivity

Conclusion

 Monoids are everywhere

 Reducers allow efficient use of Monoids

 Generators can apply Reducers in parallel

 Monoids/Reducers are composable

 Compression can improve performance

 Algebraic structures provide opportunity

