
Edward Kmett

 Speculation in C#
◦ What is it?
◦ Benchmarks!

 Speculation in Haskell
◦ Naïve Speculation
◦ Abusing GHC
 Heap Layout

 Dynamic Pointer Tagging

 Observing Evaluation

 Speculation With Observed Evaluation

◦ STM Issues
◦ Downloading

 A lot of algorithms are inherently serial.

 However, you can often guess at the output of an
intermediate step without doing all the work.

 Subsequent steps could proceed in parallel with that
guess, bailing out and retrying with the actual answer
if it turned out to be wrong.

 The speedup is based on the accuracy of your guess
and granularity of your steps. Of course it only helps
to speculate when you have more resources than can
be used by simpler parallelization means.

 Prabhu, Ramalingam and Vaswani “Safe
Programmable Speculative Parallelism”
presented last month (June 2010) at PLDI!

 Provides a pair of language primitives:

 „spec‟ and „specfold‟ for adding speculation
to a program.

 Prabhu, Ramalingam and Vaswani “Safe
Programmable Speculative Parallelism”
presented last month (June, 2010) at PLDI.

 Provides a pair of combinators:

 „spec‟ and „specfold‟ for adding speculation
to a program.

 Easy to follow semantics...

Within 5 minutes of the paper reaching reddit, I replied
with an implementation in Haskell.

Sadly, it has yet to accumulate any upvotes.

spec :: Eq a => a -> (a -> b) -> a -> b

spec guess f a =

let speculation = f guess in

speculation `par`

if guess == a

then speculation

else f a

spec :: Eq a => a -> (a -> b) -> a -> b

spec guess f a =

let speculation = f guess in

speculation `par`

if guess == a

then speculation

else f a

Without Speculation

a

f a

f $! a

With Speculation (Best Case)

a

check g == a

f guess

spec guess f a

With Speculation (Worst Case)

a

check g == a

f a

f guess XXX

spec guess f a

Under load the spark doesn’t even happen. Therefore
we don’t kill ourselves trying to speculate with
resources we don’t have! This is an improvement over
the C# implementation, which can start to diverge
under speculation.

If we speculated wrongly, the garbage collector (in
HEAD) is smart enough to collect the entire spark!

What if we already know ‘a’ by the time we go to
evaluate the spec? (it may have been sparked and
completed by now)

Then by construction any time spent computing a
guess is wasted.

How can we check to see if ‘a’ is already known
without heavyweight machinery (IO and MVars)?

 GHC uses a virtual machine called the
“Spineless Tagless G-machine.” That said, It
is neither truly spineless, nor, as we shall see,
tagless.

 Values of types that have kind * are all
represented by closures. More exotic kinds
exist for dealing with unboxed data.

• The entry code for a (saturated)
data constructor just returns
itself.

• Indirections entry code just
returns the value of the target of
the indirection.

• Thunk entry code evaluates the
thunk, and then rewrites its
header into an indirection!

•Garbage collection removes
indirections!

 ones :: [Int]

 ones = 1 : ones

thunk_1234ones =

 ones :: [Int]

 ones = 1 : ones

STG_INDones =

(:)

I# 1

 ones :: [Int]

 ones = 1 : ones

ones = (:)

I# 1

 Jumping into unknown code to “evaluate”
already evaluated data is inefficient.

 More than half the
time, the target is
already evaluated.

 Adapts a trick from the LISP community.

 Steal a few unused bits (2 or 3 depending on
architecture) from each pointer to indicate
constructor -- they were aligned anyways!.

 If unevaluated or too high an index to fit, use 0

 Let GC propagate the tags!

 ~13% Speed Increase. Implemented in 2007.

 Handles 99.2% (96.1%) of constructors in practice

 Can we get at the tag from Haskell?

data Box a = Box a

unsafeGetTagBits :: a -> Int
unsafeGetTagBits a =

unsafeCoerce (Box a) .&.
(sizeOf (undefined :: Int) – 1)

Relies on the fact that we can treat a Box as an Int
due to tagging! In practice we can use the
unsafeCoerce# primop to directly coerce to an
unboxed Word#, and avoid the extra box.

 This function is unsafe! It may return either 0
or the final answer depending on if the thunk
it is looking at has been evaluated and if GC
has run since then, but it‟ll never lie about
the tag if not 0.

 You have an extra obligation: Your code
should give the same answer regardless of
whether or not unsafeGetTagBits returns 0!

 But that is exactly what ‘spec’ does!

spec :: Eq a => a -> (a -> b) -> a -> b

spec guess f a

| unsafeGetTagBits a /= 0 = f a

| otherwise =

let speculation = f guess in

speculation `par`

if g == a

then speculation

else f a

 The complicated semantics for the C#
implementation come from checking that the
speculated producer (guess) and consumer could
read and write to references, without seeing
side-effects from badly speculated code.

 We don‟t have any side-effects in pure code, so
we can skip all of those headaches in the
common case, but how can we model something
where these transactional mutations occur?

specSTM :: Eq a => STM a –> (a -> STM b) -> a -> STM b

specSTM mguess f a = a `par` do

guess <- mguess

result <- f guess

unless (guess == a) retry

return result

`orElse`

f a

specSTM :: Eq a => STM a –> (a -> STM b) -> a -> STM b

specSTM mguess f a = a `par` do ...

Before we could spark the evaluation of f guess, so
that if it was forgotten under load, we reverted
more or less to the original serial behavior.

Here we are forced to evaluate the argument in the
background! The problem with this shows up under
load.

Under load, the spark queue will fill up and ‘spec’ will skip
the evaluation of the spark, in its case, ‘f guess’, before
returning either ‘f a’ or ‘f guess’ based on comparing
‘guess’ with ‘a’. So the only wasted computation is
checking ‘guess == a’

However, specSTM can merely skip the evaluation of ‘a’,
because evaluating ‘f guess’ needs the current
transaction, which is bound deep in the bowels of GHC to
the current thread and capability, etc. Therefore, it can
only skip the only thing we know it will actually need,
since it ultimately must check if ‘guess == a’, which will
need the value of ‘a’ that we sparked.

 In order to ape the behavior of „spec‟ in
„specSTM‟ we need a mechanism to either
hand off a transaction to a spark and get it
back when we determine the spark isn‟t
needed -- blech

 Or we need a mechanism by which we can
determine if the system is „under load‟ and
avoid computing „f guess‟ at all.

 Ultimately the definition of under load is
somewhat tricky. You can‟t just look at the
load of the machine. It is the depth of the
spark queue that determines if you‟re loaded!

 All we need to do is count the number of
entries in the spark queue for the current
capability. In “C--”:

dequeElements(cap->spark)

 What we need is a new “primop”:

numSparks# :: State# s -> (# State# s, Int# #)

 GHC has even added the ability to let third-party
libraries define their own primops so that they
could factor out the use of GMP from base and
into its own library!

 Sadly, the details of „cap‟ and „spark‟ are buried
in GHC‟s “private” headers and so we can‟t
exploit this mechanism. The extension has to be
done in GHC itself. (feature request #4167)

http://hackage.haskell.org/trac/ghc/ticket/4167

foldr :: (Foldable f, Eq b) => (Int -> b) -> (a -> b -> b) -> b -> f a -> b

Takes an extra argument that computes the guess at
the answer after n items, the last n items.

This way the estimator is counting the number of
items being estimated. Otherwise foldr over the tail
of a list would be receiving entirely different
numbers.

foldr :: (Foldable f, Eq b) => (Int -> b) -> (a -> b -> b) -> b -> f a -> b

foldr guess f z = snd . Foldable.foldr f’ (0, z)

where

f’ a (!n, b) = (n + 1, spec (guess n) (f a) b)

„speculation‟ on hackage is currently at version
0.9.0.0

It provides:

 Control.Concurrent.Speculation
◦ spec, specSTM, unsafeGetTagBits and generalizations

And a number of modules full of speculative folds:

 Data.List.Speculation (scanl, etc.)

 Data.Foldable.Speculation (foldl, foldr, etc.)

 Data.Traversable.Speculation (traverse, etc.)

 Control.Morphism.Speculation (hylo!)

 Feedback, so that if an estimator is consistently not
working, we can eventually give up

 Common estimators
◦ e.g. evaluating a fold over a fixed sliding window

 Benchmarks! Building a speculative lex clone
◦ I speculate that it will be fast!

 “Partial guesses” and early exit from obviously wrong
speculations
◦ Spoon?

 Exploiting unsafeGetTagBits in other environments
◦ Faster Data.Unamb/Data.Lub?

 If you don‟t know what to tell someone, guess!

 Then send them off with that, while you finish
computing the real answer.

 If you find out you were wrong, kill them, hide
the body, and tell their replacement the real
answer.

 If they would bottleneck on you, and you are a
good guesser, your (surviving) team may get to
go home a little bit earlier.

 Simon Marlow, Alexey Rodriguez Yakushev,
Simon Peyton Jones, Faster Laziness using
Dynamic Pointer Tagging.

