Introducing Speculation

Edward Kmett

Speculation

» Speculation in C#
- What is it?
- Benchmarks!
» Speculation in Haskell
> Naive Speculation
> Abusing GHC
- Heap Layout
- Dynamic Pointer Tagging
- Observing Evaluation
- Speculation With Observed Evaluation
> STM Issues
- Downloading

Adding Parallelism With Guesswork

» A lot of algorithms are inherently serial.

» However, you can often guess at the output of an
intermediate step without doing all the work.

» Subsequent steps could proceed in parallel with that
guess, bailing out and retrying with the actual answer
if it turned out to be wrong.

» The speedup is based on the accuracy of your guess
and granularity of your steps. Of course it only helps
to speculate when you have more resources than can

be used by simpler parallelization means.

Speculation in C#

» Prabhu, Ramalingam and Vaswani “Safe
Programmable Speculative Parallelism’
presented last month (June 2010) at PLDI!

» Provides a pair of language primitives:

» ‘spec’ and ‘specfold’ for adding speculation
to a program.

Speculation Timeline

() ——Producer Pr=——fil}— l=—Consumer C=—{jij
Value V

—Producer onsumer C={}
Value V

==V?_,

f":"

Re-execute with
Prediction correct value V
function

Speculative
e =

Consumer

Speculative
Value V'

Total time without speculation b‘
Total time with correct
speculation

Total time with incorrect specufation—»‘

Speculative Lexing

M 2 threads i 3 threads i 4 threads

Lexical analysis

Speculative Huffman Decoding

4.0 -
Huffman

Speculation in C#

» Prabhu, Ramalingam and Vaswani “Safe
Programmable Speculative Parallelism”
yresented last month (June, 2010) at PLDI.

» Provides a pair of combinators:

» ‘spec’ and ‘specfold’ for adding speculation
to a program.

» Easy to follow semantics...

Semantics of Speculation in C#

(10of 2)

ia) Syntax and Semantic [omains

T € Var ¢ & Const t e Td I eloc v € Val e € Exp H £ Heap = Loc = Val
e = e|x|Are|erez|es;en|iferezes|newe|er :=ea| le|foldese, e en |specey ege- | specfold ep ey gy 00 | v
r = waitt | cancelt | check t; t, t- e | axfold ef e, £ euty
v = e|x|Azre|l]|t]|unit
b} Evaluation Conbext
Ex=[|EFe|vE|E, e|ifEerez|newE| E|E = e|l ;= E|specepey K |ope vg---m_ g Eeypg---o,
(fold, specfold € ops, check, awfold € ops)
{c) Commeaon Evaluation Rules ((C)
[TRIEEALT] JCONTEET-1] [EARTEX T- 1) [FFLY]
He— H & He—H. & H.tle] | T=Ht[e]| T
Hotle] | T=H.e[e) || T H, E[e] -+ H, E[e'] H.t[Ele]] I T =Ht[E[e] N T H, (Az.e) v— H, efu/z
[SIHH [EF-& HF [IF-F O -2 P [Bl | | ==T)
e# D [¢ Dom(H)
H,r;e = H, e H,if D&z e3 — H, &g Hifcez ez — H s H,new v — H[l — v, 1 H.l:=v— Hll = v],v
|E=T] [FH-1] [Foars-2]
>y U L Ty

H . — H, H(D H., fold vy tumas 11 v — H, inu H, fold vy tunu v v — H, fold vy (vp v vema) (w0 + 1) v

Semantics of Speculation in C#
(2 of 2)

AIT] [L

i(d) Speculative Evaluation Rules {(5)

H, ¢ fwait t] || tf] | T = H,) [t]g] | T H, ¢ [cancelg) || t[e] [T = H.E[0] | T

|5 -A LY |

tp. by, t- freshin T
H,t[specep egve) || T = H, tp[eg] || tgleg] || to[ve (wait tg)] || tcheck tp ty t-ue] || T

ICHECE]
Tp, Tg NOL free in v
H,check tp tg t- v = H, (Axp, 25.if(2p =ime T5) (wait t.) (cancel & ve zp)) (wait tp)(wait tg)

S PEC-TTRRATE-1]
£ vy, and &y, te feshin T

H, t[specfold vy vy oy va] || T = H, t|awdbold vy vy {2y + 1) vaty] || tofvg w) || tafry (wait tg)u] | T

[SRC-ITHEATE-Z]
= vy and tg, s, tc freshin T

H, t{awdfold v vy vy vaty] | T = H, tfawdfold v; vy (v + 1) vate] || tg]vg v || tafvy vy (wait tg)] || tefcheck ety &y (vpu)] | T

[SPUC- THRATE-Y|
W = Uy

H, t[awdfold vy v, vy vt | T = H, tfwaite] || T

(e} Mon-5Speculative Evaluation Ruoles For Speculative Constructs (M)

IS O PIC-A T [HOMEM- I TIRATH]
W T

H, specfold vy vy v vy — fold vy (vg o) v

H,specep g5 8. = H, e &

Any Questions?

Speculation in Haskell

Within 5 minutes of the paper reaching reddit, | replied
with an implementation in Haskell.

Sadly, it has yet to accumulate any upvotes.

Speculation in Haskell

spec::Eqa=>a->(a->b)->a->b
spec guessfa=
let speculation = f guess in
speculation ‘par
if guess ==a
then speculation
elsefa

Speculation in Haskell

spec::Eqa=>a->(a->b)->a->b
spec guessfa=
let speculation = f guess in
speculation ‘par

Without Speculation

Q

fa
fsSla

With Speculation (Best Case)

if guess ==a eckg s
. f guess
then speculation e ssta

E|Se f a With Speculation (Worst Case)

a
checkg==a
fa

f guess

spec guess fa

Naive Speculation

Under load the spark doesn’t even happen. Therefore
we don’t kill ourselves trying to speculate with
resources we don’t have! This is an improvement over
the C# implementation, which can start to diverge
under speculation.

If we speculated wrongly, the garbage collector (in
HEAD) is smart enough to collect the entire spark!

| want more!

What if we already know ‘a’ by the time we go to
evaluate the spec? (it may have been sparked and
completed by now)

Then by construction any time spent computing a
guess is wasted.

How can we check to seeif ‘a’ is already known
without heavyweight machinery (10 and MVars)?

Heap Layout

» GHC uses a virtual machine called the
“Spineless Tagless G-machine.” That said, It
is neither truly spineless, nor, as we shall see,

tagless.

» Values of types that have kind * are all
represented by closures. More exotic kinds
exist for dealing with unboxed data.

Heap Layout

« The entry code for a (saturated)

data constructor just returns
Header Payload |tse|f

* Indirections entry code just
returns the value of the target of
. the indirection.

5 « Thunk entry code evaluates the
Entry Code thunk, and then rewrites its
’ header into an indirection!

*Garbage collection removes
indirections!

Evaluation

» ones :: [Int]
» ones = 1 : ones

onhes = thunk_1234

p—

Evaluation

» ones :: [Int]
» ones = 1 : ones

ones =

.

Evaluation

» ones :: [Int]
» ones = 1 : ones

l

|# 1

p—

Dynamic Pointer Tagging

» Jumping into unknown code to “evaluate”
already evaluated data is inefficient.

Program Evaluated scrutinee (%)

anna 63.1

» More than half the Saeheprof oS
I I constraints 54.5
time, the target is cons o
already evaluated. integrate 67.6
mandel 73.9

simple 78.6

sphere 72.8

typecheck 56.5

wang 41.9

(81 more)

Min 0.20

Max 99.00

Average 61.86

Dynamic Pointer Tagging
» Adapts a trick from the LISP community.

» Steal a few unused bits (2 or 3 depending on
architecture) from each pointer to indicate
constructor —- they were aligned anyways!'.

» If unevaluated or too high an index to fit, use O
» Let GC propagate the tags!

» ~13% Speed Increase. Implemented in 2007.

Dynamic Pointer Tagging

Family Distribution (%) Cumulative (%)

Size
1 42.5 42.5
2 52.4 94.9
3 1.2 96.1
4 0.5 96.6
5 1.7 98.3
6 0.9 99.2
7 0.0 99.2
> 0.8 100.0

» Handles 99.2% (96.1%) of constructors in practice

Abusing Dynamic Pointer Tags

» Can we get at the tag from Haskell?
data Boxa=Boxa

unsafeGetTagBits :: a -> Int

unsafeGetTagBits a =
unsafeCoerce (Box a) .&.
(sizeOf (undefined :: Int) — 1)

Relies on the fact that we can treat a Box as an Int
due to tagging! In practice we can use the
unsafeCoerce# primop to directly coerce to an

unboxed Word#, and avoid the extra box.

Abusing Dynamic Pointer Tags

» This function is unsafe! It may return either O
or the final answer depending on if the thunk
it is looking at has been evaluated and if GC
has run since then, but it’ll never lie about
the tag if not O.

» You have an extra obligation: Your code
should give the same answer regardless of
whether or not unsafeGetTagBits returns 0!

» But that is exactly what ‘spec’ does!

Smarter Speculation

spec::Eqa=>a->(a->b)->a->b
spec guess f a

| unsafeGetTagBitsa/=0=fa

| otherwise =

let speculation =f guess in

speculation ‘par

ifg==a

then speculation

elsefa

s that it?

» The complicated semantics for the C#
implementation come from checking that the
speculated producer (guess) and consumer could
read and write to references, without seeing
side-effects from badly speculated code.

» We don’t have any side-effects in pure code, so
we can skip all of those headaches in the
common case, but how can we model something
where these transactional mutations occur?

Speculating STM

specSTM::Eqa=>STMa->(a->STMb)->a->STMb
specSTM mguess fa=a ‘par do
guess <- mguess
result <- f guess
unless (guess == a) retry
return result
‘orElse’

fa

Problems with Speculating STM

specSTM::Eqa=>STMa->(a->STMb)->a->STMb
specSTM mguess fa=a ‘par do ...

Before we could spark the evaluation of f guess, so
that if it was forgotten under load, we reverted
more or less to the original serial behavior.

Here we are forced to evaluate the argument in the
background! The problem with this shows up under
load.

Problems with Speculating STM

Under load, the spark queue will fill up and ‘spec’ will skip
the evaluation of the spark, in its case, ‘f guess’, before
returning either ‘f @’ or ‘f guess’ based on comparing
‘guess’ with ‘@’. So the only wasted computation is
checking ‘guess == a’

However, specSTM can merely skip the evaluation of ‘@’,
because evaluating ‘f guess’ needs the current
transaction, which is bound deep in the bowels of GHC to
the current thread and capability, etc. Therefore, it can
only skip the only thing we know it will actually need,
since it ultimately must check if ‘guess == a’, which will
need the value of ‘a’ that we sparked.

Paths to Resolution

» In order to ape the behavior of ‘spec’ in
‘specSTM’ we need a mechanism to either
hand off a transaction to a spark and get it

back when we determine the spark isn’t
needed -- blech

» Or we need a mechanism by which we can
determine if the system is ‘under load’ and
avoid computing ‘f guess’ at all.

How Loaded is Loaded?

» Ultimately the definition of under load is
somewhat tricky. You can’t just look at the

load of the
spark queu

» All we need

machine. It is the depth of the
e that determines if you’re loaded!

to do is count the number of

entries in the spark queue for the current

capability.

de

n HC__H:

gueElements(cap->spark)

Adding numSparks#

» What we need is a new “primop”:
numSparks# :: State# s —> (# State# s, Int# #)

» GHC has even added the ability to let third-party
libraries define their own primops so that they
could factor out the use of GMP from base and
into its own library!

» Sadly, the details of ‘cap’ and ‘spark’ are buried
in GHC’s “private” headers and so we can'’t
exploit this mechanism. The extension has to be
done in GHC itself. (feature request)

http://hackage.haskell.org/trac/ghc/ticket/4167

Speculative Folds

foldr:: (Foldable f,Eqb)=>(Int->b)->(a->b->b)->b->fa->b

Takes an extra argument that computes the guess at
the answer after n items, the last n items.

This way the estimator is counting the number of
items being estimated. Otherwise foldr over the tail
of a list would be receiving entirely different
numbers.

Speculative Folds

foldr:: (Foldable f,Eqb)=>(Int->b)->(a->b->b)->b->fa->b
foldr guess f z = snd . Foldable.foldr f’ (0, z)
where
f’a(!n,b)=(n+1, spec(guess n) (fa)b)

Speculation on Hackage

‘speculation’ on hackage is currently at version
0.9.0.0

It provides:

» Control.Concurrent.Speculation
> spec, specSTM, unsafeGetTagBits and generalizations

And a number of modules full of speculative folds:
» Data.List.Speculation (scanl, etc.)

» Data.Foldable.Speculation (foldl, foldr, etc.)
» Data.Traversable.Speculation (traverse, etc.)
» Control.Morphism.Speculation (hylo!)

Lots of Combinators!
Data.Foldable.Speculation

fold :: (Foldable f, Monoid m, Eg m) == (Int -=m)] -=fm -=m

foldBy :: (Foldable f, Monoid m) == (m - m -= Bool) -= (Int -=m)] -=fm-=m

foldMap :: (Foldable f, Monoid m, Eg m) == (Int -=m) -=(a -=m)] -=fa -=m

foldMapBy :: (Foldable f, Monoid m) == (m -=m -= Bool) -= (Int -=m) -={a -=m] -=fa -=mn
foldr :: (Foldable f, Eq b) == (Int -= b)] -=i(a -=b -=b)] -=b -=fa -=b

foldrBy :: Foldable f == (b -= b -= Bool) -= (Int -=b) -=(a -»=b -=b)] -=b -=fa -=b
foldl :: (Foldable f, Eq b) == (Int -= b) -= (b -=a -=bh)] -=b -=fa -=b
foldlBy :: Foldable f == (b -= b -= Bool) -= (Int -=b) -= (b - @ -=b)] -=b -=fa -=b

foldrl :: (Foldable f, Egq al == (Int -=a) -=(a -=a -=a)l -=fa -=a
foldrlBy :: Foldable f == (a -= a -= Bool) -= (Int -=a) -= (a -=a -=a) -=fa -=a
foldll :: (Foldable f, Eq al == (Int -= a)] -=(a -=a -=a) -=fa -=a

foldllBy :: Foldable f == (@ -= @ -= Bool) -= (Int -=a) -=(a -=a -=a) -»= T a -=a

foldrM :: (Foldable f, Monad m, Eg (m b)) == (Int -=mb) -=(a -=b ->=mb)] -=mb -=FTa-=mb

foldrByM :: (Foldable f, Monad m) == im b -=m b -= Bool) -= (Int -=mb) -=(a -=b -=mb)] -=mb -=FfTa-=mb
foldlM :: (Foldable f, Monad m, Eg (m b)) == (Int -=mb) -=(b -=a ->=mb)] -=mb -=FTa-=mb

foldlByM :: (Foldable f, Monad m) == (m b ->= m b -= Bool) -= (Int -=mb) -=i(b -=a -=mb) -=mb -=fa-=mhb
foldrsTM :: (Foldable f, Eg b) == (Int -= STM b) -=(a -= b -= STMb) -=STMb -=fa -=STMb

foldrBySTM :: Foldable f == (b -= b -= STM Bool) -= (Int -= STM b) -= (@ -= b -= STM b) -= STMb - fa -= STM b

foldlsTM :: (Foldable f, Eg al == (Int -= STM a) -= (a -= b -= STMal -= STMa -=fb -=5TMa

foldlBySTM :: Foldable f == (a -= a -= STM Bool) -= (Int -= STM a) -= (a -= b -= STMa) -= STMa -= T b -= 5TM a

Lots of Combinators!
Data.Foldable.Speculation

traverse_ :: (Feoldable t. Applicative f, Eg (f ())) == (Int -= f) -= (a -= T b) -=t a -=Ff (]

traverseBy_ :: (Foldable t. Applicative f) == (f () -= f (] -= Bool) -= (Int -= f c) -=(a -=fb) -=ta -=f (]
for_ :: (Foldable t, Applicative f, Eq (f ())) == (Int -= f) -=t a -={a -= T b) -=F ()

forBy_ :: (Foldable t, Applicative f) == (f (] -= f (] -= Bool) -= (Int -= f ¢} -=t a -= (a -= f bl -=f (]
sequenceA_ :: (Foldable t, Applicative f, Eg (f ())) == (Int -= f b) -=1t (f a) -= f (]

sequenceByA_ :: (Foldable t. Applicative f, Eg (f ())) == (f () -= f () -= Bool) -= (Int -= f b) -=1t (fa) -=f ()

asum :: (Foldable t, Alternative f, Eg (f al) == (Int -= f al -=t (fal -=f a

asumBy :: (Foldable t, Alternative f) == (f a -= f @ -= Bool) -= (Int -= fa) -=t (fa) -=fa

mapM_ :: (Foldable t, Monad m, Eg (m ())) == (Int -=mc) -={a -=mb)] -=ta -=mi]

mapByM_:: (Foldable t, Monad m) == (m () -=m (] -= Bool) -= (Int -=mc) -=(a -=mb) -=ta-=mi)
forM_ :: (Foldable t, Monad m, Eg im {])]) == (Int -=mec) -=t a -=(a -=mb)] -=mn ()

forByM_ :: (Foldable t. Monad m) == (m () ->m () -= Bool) -= (Int -=mc) -t a -=(a -=mb) -=m ()
sequence_ :: (Foldable t, Monad m, Egq (m ())) == (Int ->m b) -=t (ma) -=m ()

sequenceBy_ :: (Foldable t, Monad m) == (m () -=m () -= Bool) -= (Int -=mb) -=t (imal -=m (]

msum :: (Foldable t, MonadFlus m, Eq (m al) == (Int ->=ma) -=t (mal] -=ma

msumBy :: (Foldable t, MonadFlus m) == (ma ->= m a -= Bool) -= (Int ->=mal -=t (ma)l -=ma

mapSTHM_ :: Foldable t == STM Bool -= (Int -= STM) -= (a -= STMb) -=t a -= STM (]

forsTM_ :: Foldable t == STM Bool -» (Int -= STM c) -t a -= (a -= STM b) -= STM ()

sequenceSTM_ :: Foldable t == STM Bool -= (Int -= STM &) -=t (STM b) -= STM (]

Lots of Combinators!
Data.Traversable.Speculation

traverse :: (Traversable t, Applicative f, BEq a) == (Int -» a) -> (a -> f b) ->ta -> f (t b)

traverseBy :: (Traversable t, Applicative f) == (a -» a -» Bool) -> (Int -» a) -»> (a -> f b) ->ta ->f (th)
for :: (Traversable t., Applicative f, Eq a) == (Int -> a) -»ta -= (a -= f b) -= f (t b)

forBy :: (Traversable t, #Applicative f) == (a -» a -» Bool) ->» (Int -» a) ->ta ->(a ->f b) -»1T (th)
sequenced :: (Traversable t., Applicative f, Eq (f a)) == (Int -» f a) -» t (fa) -» f (t a)

sequenceByA :: (Traversable t, Applicative f) == (f a -> f a -> Bool) -> (Int -> f a) -t (f a) -> f (t a)
mapM :: (Traversable t, Monad m, Eq a) == (Int ->a) -> (@ ->mb) ->ta ->m (th)

mapByM :: (Traversable t, Monad m) == (a -> a -» Bool) -» (Int -» a) -> (a3 ->mb) ->ta ->m (t b)
sequence :: (Traversable t, Monad m, Egq (m a)) == (Int ->ma) ->t (ma) ->m (t a)

sequenceBy :: (Traversable t, Monad m) == (ma ->m a -> Bool) -» (Int ->ma) -»t (ma) ->m (t a)

forM :: (Traversable t, Monad m, Eg a) => (Int -» a) -»ta -> (@ ->mb) ->m (Lt b)

forByM :: (Traversable t, Monad m) == (a -> a -» Bool) -» (Int -» a) ->ta -> (a ->mb) ->m (t b)

mapSTM :: (Traversable t, Eq a) == (Int -» STM a) -» (a -» STM b) -> t a -» 5TM (t b)

mapBySTM :: Traversable t == (a -> a -> STM Bool) -> (Int -> STM a) -> (@ -> STH b) ->t a -> STM (t b)
forsTM :: (Traversable t, Eq a) == (Int -> STM a) -> ta -> (a -> STM b) -> STM (t b)

forBySTM :: Traversable t == (a -> a -> STM Bool) -> (Int -> STM a) -> t a -> (@ -> STM b) -> STM (t b)
mapAccumL :: (Traversable t, Eq a) =» (Int -»> a) -> (a ->b -» (a, c}) ->a -t b -> (a, t c}

mapAccumlBy :: Traversable t == (a -» a -» Bool) -> (Int -»>a) -»> (a -»b -» (a, c)) -»a -»t b ->» (a, tc)
mapAccumR :: (Traversable t, Egq a) => (Int ->a) -> (@ ->b -> (a, c}) ->a ->tb ->(a, tc)

mapAccumRBy :: Traversable t == -»a -= Bool) -= (Int -=a) -= (@ ->b - (a, c)) -=a -=tb ->(a tc)

Lots of Combinators!
Data.List.Speculation

scan :: (Monoid m, Eg m) == (Int -=m) -> [m] -> [m]

scanBy :: Monoid m => (m -> m -» Bool) -> (Int ->m) -> [m] -> [m]

scanMap :: (Monoid m, Eq m) == (Int -=m) -= (a -> m) -= [a] -= [m]

scanMapBy :: Monoid m => (m -> m -> Bool) -» (Int -»> m) -» (@ -> m) -> [a] -> [m]

scanr :: EqQ b == (Int ->b) -> (@ -> b ->b) -=b -> [a] -= [b]
(Int - b) - {a ->b -=b) -=b -> [a] -= [b]

W

scanrBy :: (b - b -> Bool) -
(b ->a -=b) -=b -> [a] -= [b]

W

scanl :: Eqg b => (Int -» b) -

scanlBy :: (b - b -= Bool) -= (Int -=b) -= (b ->a -=b) -=b -= [a] -= [b]
scanrl :: Eq a == (Int - a) -» (a - a -= a) -= [a] -= [al

scanrlBy :: (a -» a -> Bool) -» (Int -» a) -> (a -»> a -> a) -> [a] -> [a]
scanll :: Eq a => (Int -> a) -» (a -» a -> a) -> [a] -> [a]

scanllBy :: (a -> a -> Bool) -> (Int ->a) -> (a ->a -> a) -> [a] -> [a]

Lots of Combinators!
Control.Morphism.Speculation

hylo :: (Functor f, Eq a) == (Int ->a) -> (fb ->b) ->(a ->f a) ->a ->b

hylo g phi psi is @ hylomorphism using a speculative anamorphism,
where g n estimates the seed after n iterations of psi.

Future Directions

» Feedback, so that if an estimator is consistently not
working, we can eventually give up

» Common estimators
- e.g. evaluating a fold over a fixed sliding window

» Benchmarks! Building a speculative lex clone
- | speculate that it will be fast!

» “Partial guesses” and early exit from obviously wrong
speculations
- Spoon?

» Exploiting unsafeGetTagBits in other environments
- Faster Data.Unamb/Data.Lub?

Lessons for the Real World

» If you don’t know what to tell someone, guess!

» Then send them off with that, while you finish
computing the real answer.

» If you find out you were wrong, kill them, hide
the body, and tell their replacement the real
answer.

» If they would bottleneck on you, and you are a
good guesser, your (surviving) team may get to
go home a little bit earlier.

EXTRA SLIDES

Dynamic Pointer Tagging

» Simon Marlow, Alexey Rodriguez Yakushev,
Simon Peyton Jones, Faster Laziness using
Dynamic Pointer Tagging.

