{-# language EmptyCase #-} {-# language TypeOperators #-} {-# language FlexibleContexts #-} {-# language TypeApplications #-} {-# language DefaultSignatures #-} {-# language ScopedTypeVariables #-} --------------------------------------------------------------------------------- -- | -- Copyright : (c) Edward Kmett 2017 -- License : BSD2 -- Maintainer: Edward Kmett <ekmett@gmail.com> -- Stability : experimental -- Portability: non-portable -- -- In order to work with fragments of syntax trees without having to pay -- an inordinate cost moving around errors and terms, we need a notion of -- 'Relative' data types that permit relocation cheaply. -- -- Note: There is structure to these classes: Consider the following -- problematic derivation that show some instances here are incompatible -- with others. -- -- @ -- 'Delta' 1 = -- by instance 'Monoid' 'Delta' -- 'Delta' 1 '<>' 'mempty' = -- by instance 'MonoidalDelta' t -- 'Delta' 1 '<>' 'delta' 'mempty' = -- by instance 'RelativeDelta' t -- 'delta' ('rel' ('Delta' 1) 'mempty') = -- by instance 'RelativeMonoid' t -- 'delta' 'mempty' = -- by instance 'MonoidalDelta' t -- 'mempty' = -- by definition -- 'Delta' 0 -- @ --------------------------------------------------------------------------------- module Coda.Relative.Class ( -- * Data types with relative positions Relative(..) , GRelative , grel , frel , birel -- * Relative monoids , RelativeMonoid -- * Relative orderings , RelativeOrder , StrictRelativeOrder ) where import Coda.Relative.Delta.Type import Data.Bifunctor import Data.Coerce import Data.Functor.Identity import Data.List.NonEmpty import Data.Monoid import Data.Profunctor.Unsafe import Data.Proxy import Data.Void import GHC.Generics -------------------------------------------------------------------------------- -- Relative -------------------------------------------------------------------------------- -- | Applying a relative position change as a left monoid action -- -- Laws: -- -- @ -- 'rel' mempty ≡ 'id' -- 'rel' (m '<>' n) ≡ 'rel' m . 'rel' n -- @ -- -- Preferably 'rel' relocates in /O(1)/ or logarithmic time at worst or -- the container probably isn't well suited for relative use. -- -- Note: rel d = id is a perfectly legitimate definition by these laws. -- -- Note: if you use some stashed delta to slow the descent into your data -- structure, then you probably need to have nominal roles for your arguments. class Relative a where rel :: Delta -> a -> a default rel :: (Generic a, GRelative (Rep a)) => Delta -> a -> a rel = grel instance Relative Delta where rel = (<>) instance Relative a => Relative (Maybe a) where rel d (Just a) = Just (rel d a) rel _ Nothing = Nothing {-# inline rel #-} instance Relative () instance Relative Void instance Relative (Proxy a) instance Relative a => Relative (Identity a) instance (Relative a, Relative b) => Relative (a, b) where rel = birel instance (Relative a, Relative b) => Relative (Either a b) where rel = birel -- | /O(n)/ instance Relative a => Relative [a] -- | /O(n)/ instance Relative a => Relative (NonEmpty a) -- instance Relative a => Relative [a] where rel = frel -- instance Relative a => Relative (NonEmpty a) where rel = frel class GRelative f where grel' :: Delta -> f a -> f a instance GRelative U1 where grel' _ U1 = U1 instance GRelative V1 where grel' _ x = case x of {} instance (GRelative f, GRelative g) => GRelative (f :*: g) where grel' d (f :*: g) = grel' d f :*: grel' d g instance (GRelative f, GRelative g) => GRelative (f :+: g) where grel' d (L1 f) = L1 (grel' d f) grel' d (R1 f) = R1 (grel' d f) instance Relative c => GRelative (K1 i c) where grel' = coerce (rel @c) instance GRelative f => GRelative (M1 i c f) where grel' d = M1 #. grel' d .# unM1 instance (Functor f, GRelative g) => GRelative (f :.: g) where grel' d = Comp1 #. fmap fmap grel' d .# unComp1 -- | We can derive relativity generically. grel :: (Generic a, GRelative (Rep a)) => Delta -> a -> a grel 0 = id grel d = to . grel' d . from {-# INLINE grel #-} -- | Every functor can be relative. frel :: (Functor f, Relative a) => Delta -> f a -> f a frel 0 = id frel f = fmap (rel f) {-# INLINE frel #-} -- | Every bifunctor can be relative. birel :: (Bifunctor f, Relative a, Relative b) => Delta -> f a b -> f a b birel 0 = id birel d = bimap (rel d) (rel d) {-# inline birel #-} -------------------------------------------------------------------------------- -- Relative monoids -------------------------------------------------------------------------------- -- | -- Laws: @'rel' d@ is a monoid homomorphism. -- -- @ -- 'rel' d (m '<>' n) = rel d m '<>' rel d n -- 'rel' d 'mempty' = 'mempty' -- @ -- -- TODO: Add @RelativeSemigroup@ in ghc 8.4 -- -- @ -- instance RelativeSemigroup Void -- instance Relative a => RelativeSemigroup (NonEmpty a) -- @ class (Relative t, Monoid t) => RelativeMonoid t instance RelativeMonoid Delta instance RelativeMonoid () instance (RelativeMonoid a, RelativeMonoid b) => RelativeMonoid (a,b) instance Relative a => RelativeMonoid [a] -------------------------------------------------------------------------------- -- Relative orderings -------------------------------------------------------------------------------- -- | A relative order -- -- Laws: -- -- @'rel' d@ is monotone, that is to say -- -- @x '<=' y@ implies @'rel' d x <= 'rel' d y@ -- -- class (Relative t, Ord t) => RelativeOrder t instance RelativeOrder Delta instance RelativeOrder () instance (RelativeOrder a, RelativeOrder b) => RelativeOrder (a, b) instance (RelativeOrder a, RelativeOrder b) => RelativeOrder (Either a b) instance RelativeOrder a => RelativeOrder [a] instance RelativeOrder a => RelativeOrder (NonEmpty a) -- | A _strict_ relative order -- -- -- Laws: -- -- @x '<' y@ implies @'rel' d x '<' 'rel' d y@ -- -- This can be useful for keys in relative maps because shifting the -- map can't cause keys to collapse class RelativeOrder t => StrictRelativeOrder t instance StrictRelativeOrder Delta instance StrictRelativeOrder () instance (StrictRelativeOrder a, StrictRelativeOrder b) => StrictRelativeOrder (a, b) instance (StrictRelativeOrder a, StrictRelativeOrder b) => StrictRelativeOrder (Either a b) instance StrictRelativeOrder a => StrictRelativeOrder [a] instance StrictRelativeOrder a => StrictRelativeOrder (NonEmpty a)