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 FingerTrees are a special form of “leafy” 
“monoidally annotated” 2-3 Tree that provide 
fast access from the first and last leaves.

 We call the first and last node in the tree the 
„fingers‟ of the tree, in a sense we‟ll make 
more rigorous shortly.



Operation Amortized Bounds

Finger Tree Annotated 2-3 Tree List Vector

cons, snoc O(1) O(log n) O(1)/O(n) O(n)

viewl, viewr O(1) O(log n) O(1)/O(n) O(1)

measure/length O(1) O(1) O(n) O(1)

append O(log min(ℓ1, ℓ2)) O(log n) O(n) O(n+m)

split O(log min(n, ℓ-n)) O(log n) O(n) O(1)

replicate O(log n) O(log n) O(n) O(n)

fromList, toList, reverse O(ℓ)/O(ℓ)/O(ℓ) O(ℓ) O(1)/O(1)/O(n) O(n)

index O(log min(n, ℓ-n) O(log n) O(n) O(1)



 data Leafy a = Leaf a | Fork (Tree a) (Tree a)
or

 data Tree a = Tip | Bin (Tree a) a (Tree a)



 data Leafy a = Leaf a | Fork (Leafy a) (Leafy a)

 instance Functor Leafy where
◦ fmap f (Leaf a) = Leaf (f a)

◦ fmap f (Fork l r) = Fork (fmap f l) (fmap f r)

 instance Monad Leafy where
◦ return = Leaf

◦ Leaf a >>= f = f a

◦ Fork l r >>= f = Fork (l >>= f) (r >>= f)



 data Leafy a = Leaf a | Fork (Leafy a) (Leafy a)

 data Tree a = Empty | Tree (Leafy a)

instance Functor Tree ...

instance Monad Tree ...



 data Tree a = Tip | Bin (Tree a) a (Tree a)

 instance Functor Tree where
fmap _ Tip = Tip
fmap f (Bin l a r) = Bin (fmap f l) (f a) (fmap f r)

 instance Monad Tree where
return a = Bin Tip a Tip
Tip >>= _ = Tip
Bin l a r >>= f = (l >>= f) +++ f a +++ (r >>= f)

(+++) :: Tree a -> Tree a -> Tree a



 data Tree a = Tip | Bin (Tree a) a (Tree a)

 Lots of variations in the containers library

Bounded Balance:
 data Map k v = Tip | Bin !!Int !k v !(Map k v) !(Map k v)

 data Set k = Tip | Bin !!Int !k !(Set k) !(Set k)

PATRICIA Tries
 data IntSet = Tip | Bin !!Int !IntSet !IntSet

 data IntMap v = Tip | Bin !!Int v !(IntMap v) !(IntMap v)



 data Leafy a = Leaf a | Fork (Tree a) (Tree a)

 data Tree a = Tip | Bin (Tree a) a (Tree a)

Observations:

 Leafy trees are non-empty

 You have to plod all the way down to the 
leaves to extract any values

 They are a little easier to define as a monad



data Node v a = Tip a | Bin (Tree v a) v (Tree v a)

 Both are special cases!

type Leafy a = Node () a

type Tree a = Node a ()

v could be:

 a key that we use to walk the tree

 a summary of the leaves below it

 ...



data Tree v a = Empty | Tree (Node v a)

data Node v a = Tip a | Bin (Node v a) v (Node v a)

 Both are special cases!

type Leafy a = Node () a

type Tree a = Node a ()

v could be:
 a key that we use to walk the tree
 a summary of the leaves below it
 ...



 We have a few options for how we to build 
trees. 

 The containers library rather adequately 
covers most use cases that just store values 
in the nodes.



 data Tree v a = Empty | Tree (Node v a)

 data Node v a = Tip a | Bin (Node v a) !v (Node v a)

 instance Functor (Node v) where
fmap f (Tip a) = Tip (f a)

fmap f (Bin l v r) = Bin (fmap f l) v (fmap f r)

 instance Monad (Node v) where
return = Tip

Tip a >>= f = f a

Bin l v r >>= f = Bin (l >>= f) v (r >>= f)

instance Functor (Tree v) ...

instance Monad (Tree v) ...



 data Tree v a = Empty | Tree (Node v a)

 data Node v a = Tip a | Bin (Node v a) !v (Node v a)

 instance Functor (Node v) where
fmap f (Tip a) = Tip (f a)

fmap f (Bin l v r) = Bin (fmap f l) v (fmap f r)

 instance Monad (Node v) where
return = Tip

Tip a >>= f = f a

Bin l v r >>= f = Bin (l >>= f) v (r >>= f)

instance Functor (Tree v) ...

instance Monad (Tree v) ...



 data Tree v a = Empty | Tree (Node v a)

 data Node v a = Tip a | Bin (Node v a) !v (Node v a)

 This monad and our lack of balancing are rather closely tied.

 You can‟t balance the tree because the number of leaves 
would change and the data is in the leaves.

 So while that monad is free, you get what you paid for.



 class Monoid m where
◦ mempty :: m
◦ mappend :: m -> m -> m
◦ mconcat :: [m] -> m
◦ mconcat = foldr mappend mempty

(◊) = mappend -- (<>) is going into base !

Laws:
∀ a. mempty ◊ a = a ◊ mempty = a
∀ a b c. (a ◊ b) ◊ c = a ◊ (b ◊ c)

instance Monoid [] where
mempty = []
mappend = (++)

newtype Size = Size Int
deriving (Show,Eq,Num)

instance Monoid Size where
mempty = 0
mappend = (+)



 data Tree v a = Empty | Tree (Node v a)

 data Node v a = Tip a | Bin (Node v a) !v (Node v a)

 class Monoid v => Measured v a | a -> v where
◦ measure :: a -> v

bin :: Measured v a => Node v a -> Node v a -> Node v a

bin l r = Bin l (measure l `mappend` measure r) r

instance Measured v a => Measured v (Node v a) where

measure (Tip a) = measure a

measure (Bin _ v _) = v

instance Measured v a => Measured v (Tree v a) where

measure Empty = mempty

measure (Tree t) = measure t



 data Tree v a = Empty | Tree (Node v a)

 data Node v a = Tip a | Bin (Node v a) !v (Node v a)

 instance Measured v a => Monoid (Tree v a) where
mempty = Empty

Empty `mappend` r = r

l `mappend` Empty = l

Tree l `mappend` Tree r = bin l r



 data Tree v a = Empty | Tree (Node v a)

 data Node v a = Tip a | Bin (Node v a) !v (Node v a)

 instance Measured v a => Monoid (Tree v a) where
mempty = Empty

Empty `mappend` r = r

l `mappend` Empty = l

Tree l `mappend` Tree r = bin l r

We violate associativity! (even after we add balancing)

We need to be careful what knowledge we expose of our structure.



“Make illegal states unrepresentable” 
Yaron Minsky

http://ocaml.janestcapital.com/?q=node/75



“Make illegal states unrepresentable” 
Yaron Minsky

Let‟s express more invariants at the type level!

http://ocaml.janestcapital.com/?q=node/75



 data Complete a = Nil | a :> Complete (a, a) 

instance Functor Complete where

fmap _ Nil = Nil

fmap f (a :> as) = f a :> fmap (both f) as where

both f (a,b) = (f a, f b)

left :: Complete a -> Maybe (Complete a)

left = exercise



 data Complete a = Nil | a :> Complete (a, a)

Nil

1 :> Nil

2 :> (1,3) :> Nil

4 :> (2,6) :> ((1,3),(5,7)) :> Nil

...



 data Complete a = Nil | a :> Complete (a, a)

Nil

1 :> Nil

2 :> (1,3) :> Nil

4 :> (2,6) :> ((1,3),(5,7)) :> Nil

...





 data Complete a = Nil | a :> Complete (a, a) 

instance Functor Complete where

fmap _ Nil = Nil

fmap f (a :> as) = f a :> fmap (both f) as where

both f (a,b) = (f a, f b)

instance Applicative Complete where

pure a = a :> Nil

Nil <*> _ = Nil

_ <*> Nil = Nil

(f :> fs) <*> (a :> as) = f a :> exercise



 data Square a = Zero a | Succ (Square (a, a))

 instance Functor Square where
◦ fmap f (Zero a) = Zero (f a)

◦ fmap f (Succ as) = Succ (fmap (both f) as)

instance Applicative Square where
pure = Zero

Zero f <*> a = fmap f a

fs <*> Zero a = fmap ($a) fs

Succ fs <*> Succ as =exercise



 data Square a = Zero a | Succ (Square (a, a))

 instance Functor Square where
◦ fmap f (Zero a) = Zero (f a)

◦ fmap f (Succ as) = Succ (fmap (both f) as)

instance Applicative Square where
pure = Zero

Zero f <*> a = fmap f a

fs <*> Zero a = fmap ($a) fs

Succ fs <*> Succ as =exercise



 data Square a = Zero a | Succ (Square (a, a))



 data Tree v a = 
Tip a

| Bin (Tree v a) v (Tree v a) 
| Tri (Tree v a) v (Tree v a) v (Tree v a)

But again how do we know our tree is balanced?

Tip
Bin Tip 1 Tip
Tri Tip 1 Tip 2 Tip

Bin Tip 1 (Bin Tip 2 (Bin Tip 3 Tip))) –- we don‟t



Bin Tip 1 (Bin Tip 2 (Bin Tip 3 Tip))) –- we don‟t



 data Tip a = Tip

 data Layer f a = Bin (f a) a (f a) 

| Tri (f a) a (f a) a (f a)

 data Nat f a = Zero (f a) | Succ (Nat (Layer f) a)

 newtype Tree a = Tree (Nat Tip a)

 Tree (Zero Tip)

 Tree (Succ (Zero (Bin Tip 1 Tip)))

 Tree (Succ (Zero (Tri Tip 1 Tip 2 Tip)))

 Tree (Succ (Succ (Zero (Bin (Bin Tip 1 Tip) 2 (Bin Tip 1 Tip)))))

 As desired, Bin Tip 1 (Bin Tip 2 (Bin Tip 3 Tip))) doesn‟t typecheck!



 data Node v a = Bin !v a a | Tri !v a a a

 data Nat v a = Zero a | Succ (Nat v (Node v a)))

 data Tree v a = Empty | Tree (Nat v a)

 Empty

 Tree (Zero a)

 Tree (Succ (Zero (Bin 2 a b)))

 Tree (Succ (Zero (Tri 3 a b c)))

 Tree (Succ (Succ (Zero (Bin 4 (Bin 2 a b) (Bin 2 c d))))

 Tree (Succ (Succ (Zero (Bin 5 (Tri 3 a b c) (Bin 2 d e)))))



Tree (Succ (Succ (Zero (Bin 6 (Tri 3 a b c) (Tri 3 d e f))))



 data Node v a = Bin !v a a | Tri !v a a a

 data Nat v a = Zero a | Succ (Nat v (Node v a)))

 data Tree v a = Empty | Tree (Nat v a)



 newtype Elem a = Elem a

 data Node v a = Node2 !v a a | Node3 !v a a a

 data Nat v a = Zero a | Succ (Nat v (Node v a)))

 data Tree v a = Empty | Tree (Nat v (Elem a))

 This brings us into closer alignment with the notation in 
the Hinze and Paterson paper, and the „Elem‟ newtype is 
useful to allow SPECIALIZE pragmas to fire 
discriminating between Node‟s and Elem‟s, allowing for 
better optimization.



 Coming Up:

◦ Defining Fingers

◦ Neat Finger Trees

◦ Hinze and Paterson Finger Trees

◦ Applications

◦ Ropes



Fingers predate their use by Hinze and 
Paterson. In fact they go back quite a ways:

D. Harel and G. Lueker. A Data Structure with 
Movable Fingers and Deletions. T.R. 145, 
Dept of ICS, University of California at Irvine, 
1979.

They go back a couple years farther than that, 
but I haven‟t tracked down the original paper!

http://www.soi.city.ac.uk/~ross/papers/FingerTree.html
http://www.soi.city.ac.uk/~ross/papers/FingerTree.html
http://www.soi.city.ac.uk/~ross/papers/FingerTree.html
http://www.soi.city.ac.uk/~ross/papers/FingerTree.html


 Finger are fast access points.

 A notable example with a single movable finger is a Zipper:

 data ListZipper a = LZ ![a] [a]

 empty = LZ [] [] -- O(1)
 insert x (LZ path xs) = LZ (path (x:xs)) -- O(1)
 adjust f (LZ path (x:xs)) = LZ (path (f x:xs)) -- O(1)
 delete (LZ path r) = LZ path (tail r) -- O(1)
 left (LZ (x:path) xs) = LZ path (x:xs) -- O(1)
 right (LZ path (x:xs)) =  LZ (x:path) xs -- O(1)

 toList (LZ path xs) = reverse path ++ xs -- O(n)
 fromList = LZ [] -- O(1)



 Finger Search Tree‟s were designed to allow 
multiple such fast movable access points and a 
number of operations. 

 In a transient imperative setting you can support an 
unbounded number of fingers, and obtain even 
nicer asymptotics. [Brodal et al.]

 Splay trees provide the same O(log distance to 
finger) bound as a one finger tree. [Cole]

http://www.cs.au.dk/~gerth/papers/jcss03.pdf
http://www.cs.au.dk/~gerth/papers/jcss03.pdf
http://www.cs.au.dk/~gerth/papers/jcss03.pdf
http://portal.acm.org/citation.cfm?id=100218&dl=GUIDE&coll=GUIDE&CFID=83429607&CFTOKEN=38598490


Shamelessly stolen from a blog post reply by David Eppstein:

 empty: an empty finger search tree. This doubles as a 
finger.

 find f x: find value x starting from finger f; return a finger 
to x's location. f remains a valid finger.

 delete f: delete the value pointed to by finger f, return a 
finger to the element just larger than the one at f. f is 

no longer a valid finger.

 insert f x: insert a value x to the right of finger f, returning 
a finger pointing at x. f remains a valid finger.



◦ Annotated 2-3 Trees make a half-way decent general 
purpose data structure once you get good at picking 
monoids, but you pick up an unfortunately logarithmic 
factor on most accesses.

◦ The left- and right-most nodes in a tree do a lot of work 
when trying to use a tree as a deque

◦ H&P‟s first idea: let the user emulate n fingers by 
juggling multiple trees as log as you have a tree that 
supports a finger to its left- and right-most nodes, and 
we can implement that functionally.

◦ H&P‟s second idea: You can fix the remaining asymptotic 
issues by allowing a bit of slop on the edges.



data Node v a = Bin !v a a | Tri !v a a a

data Tree v a = E | S a | N !(Node v a) |

| D !v !(Node v a) !(Tree v (Node v a)) !(Node v a)



data Node v a = Bin !v a a | Tri !v a a a
data Tree v a = E | S a | N !(Node v a) |

| D !v !(Node v a) !(Tree v (Node v a)) !(Node v a)

Size-Annotated Tree => Neat Finger Tree
Empty => 

E
Tree (Zero z) => 

S z
Tree (Succ (Zero (Bin 2 y z)) => 

N (Bin 2 y z)
Tree (Succ (Succ (Zero (Bin 4 (Bin 2 w x) (Bin 2 y z)))) => 

D 4 (Bin 2 w x) E (Bin 2 y z)
Tree (Succ (Succ (Zero (Tri 6 (Bin 3 a b) (Bin 2 c d) (Bin 2 e f))))) => 

D 6 (Bin 2 a b) (N (Bin 2 c d)) (Bin 2 e f)



data Node v a = Bin !v a a | Tri !v a a a

data Tree v a = E | S a | N !(Node v a) |

| D !v !(Node v a) (Tree v (Node v a)) !(Node v a)



data Node v a = Bin !v a a | Tri !v a a a

data Tree v a = E | S a | N !(Node v a) |

| D !v !(Node v a) !(Tree v (Node v a)) !(Node v a)



data Node v a = Bin !v a a | Tri !v a a a

data Tree v a = E | S a | N !(Node v a) |

| D !v !(Node v a) !(Tree v (Node v a)) !(Node v a)

Sadly the asymptotics on “Neat” FingerTrees aren‟t as good as 
they could be.

cons‟ing can be O(log n) and viewing are still O(log n)!



data Digit a = One a | Two a a | Three a a a | Four a a a a

data Node v a = Node2 !v a a | Node3 !v a a a

data FingerTree v a = Empty | Single a

| Deep !v !(Digit a) !(FingerTree v (Node v a)) !(Digit a)

Empty

Single „z‟

Deep 2 (One „y‟) Empty (One „z‟)

Deep 5 (Four „v‟ „w‟ „x‟ y‟) Empty (One „z‟)

Deep 7 (Four „t‟ „u‟ „v‟ „w‟) (Single (Node2 2 „x‟ „y‟)) (One „z‟)



.. <| w <| x <| y <| z <| empty



data Digit a = One a | Two a a | Three a a a | Four a a a a

data Node v a = Node2 !v a a | Node3 !v a a a

data FingerTree v a = Empty | Single a

| Deep !v !(Digit a) !(FingerTree v (Node v a)) !(Digit a)

(<|) :: Measured v a => a -> FingerTree v a -> FingerTree v a

a <| Empty = Single a

a <| Single b = deep (One a) Empty (One b)

a <| Deep (One b) m sf = deep (Two a b) m sf

a <| Deep (Two b c) m sf = deep (Three a b c) m sf

a <| Deep (Three b c d) m sf = deep (Four a b c d) m sf

a <| Deep (Four b c d e) m sf =

deep (Two a b) (node3 c d e <| m) sf



data Digit a = One a | Two a a | Three a a a | Four a a a a

data Node v a = Node2 !v a a | Node3 !v a a a

data FingerTree v a = Empty | Single a

| Deep !v !(Digit a) !(FingerTree v (Node v a)) !(Digit a)

data ViewL s a = EmptyL | a :< s a

viewl :: Measured v a => FingerTree v a -> ViewL (FingerTree v) a 

viewl Empty = EmptyL

viewl (Single x) = x :< Empty 

viewl (Deep _ (One x) m sf) = x :< case viewl m of 

EmptyL -> digitToTree sf

a :< m' -> deep (nodeToDigit a) m' sf

viewl (Deep _ pr m sf) = lheadDigit pr :< deep (ltailDigit pr) m sf



data Digit a = One a | Two a a | Three a a a | Four a a a a

data Node v a = Node2 !v a a | Node3 !v a a a

data FingerTree v a = Empty | Single a

| Deep !v !(Digit a) !(FingerTree v (Node v a)) !(Digit a)

Observations:

 Digit and Single don‟t bother to track the measure, assuming 
the monoid is inexpensive to recalculate.

 Digits can contain 1-4 elements, allowing for the 
aforementioned „slop‟



cons 
v

cons u

“tail”

“tail”

cons
u

“tail”

Safe

Dangerous

Safe

Dangerous





split :: Measured v a => 

(v -> Bool) -> 

Fingertree v a -> 

(FingerTree v a, FingerTree v a)

split breaks a fingertree on some location where the predicate

applied to the value of the measure of the prefix of the 
fingertree, changes from false to true.

using the Size monoid:

split (> 2) (Deep 5 (Four a b c d) Empty (One e) =

(Deep 2 (One a) Empty (One b), Deep (Two c d) Empty (One e))



Killer App:

Sequences, Data.Sequence is even Haskell 98!

But Size isn‟t the only Monoid!
 Priority Queues

 Ordered Sequences

 Ropes

 Interval Trees

 Tracking Line Numbers in Source Code

 ...



newtype Elem a = Elem a

data Key a = NoKey | Key a deriving (Ord)

data OrdSeq a = FingerTree (Key a) (Elem a)

instance Monoid (Key a) where
mempty = NoKey
k `mappend` NoKey = k
_ `mappend` k = k

instance Measured (Key a) (Elem a) where
measure (Elem x) = Key x



newtype Elem a = Elem a

data Key a = NoKey | Key a
deriving (Ord)

data OrdSeq a = FingerTree (Key a) (Elem a)

partition :: Ord a => a -> OrdSeq a -> (OrdSeq a, OrdSeq a)
partition k = split (>= Key k)

insert :: Ord a => a -> OrdSeq a -> OrdSeq a 
insert x xs = l >< (Elem x <| r)

where (l,r) = partition x xs

 (><) – is a FingerTree „append‟





 data Entry k v = Entry k v
 data Prio k v = Infinity | Prio k v – unbounded min monoid
 type PQ k v = FingerTree (Prio k v) (Entry k v)

 instance Monoid (Prio k v) where
◦ mempty = Infinity
◦ x `mappend` Infinity = x

Infinity `mappend` y = y
x@(Prio kx _) `mappend` y@(Prio ky _) 

| kx <= ky = x
| otherwise = y

 instance Measured (Prio k v) (Entry k v)
◦ measure (Entry k v) = Prio k v

 insert k v q = Entry k v <| q
 union q q‟ = q >< q‟



 data Entry k v = Entry k v

 data Prio k v = Infinity | Prio k v

 type PQ k v = FingerTree (Prio k v) (Entry k v)

 dequeue :: Ord k => PQ k v -> Maybe (k, v, PQ k v)

 dequeue q

| null q = Nothing

| otherwise = Just (k, v, case viewl t of _ :< r‟ -> l >< r‟)

where

Prio k v = measure q

(l, r) = split belowk q

belowk Infinity = False

belowk (Prio k‟ _) = k‟ <= k



 data Entry k v = Entry k v

 data Prio k v = Infinity | Prio k v

 type PQ k v = FingerTree (Prio k v) (Entry k v)



Deep (Prio 2 a)

One

Entry 2 a

Empty Two

Entry 3 c Entry 1 d

Deep (Prio 1 b)

One

Entry 2 a 

Empty Two

Entry 1 b Entry 3 c Entry 1 d

Single

Entry 2 a

Deep (Prio 1 b)

Two

Entry 1 b Entry 3 c

Empty One

Entry 1 d

split

Deep (Prio 1 d)

One

Entry 3 c

Empty One

Entry 1 d

tail

dequeue:
take measure
split on measure
take the tail of the right hand side
append it to the left
return original measure 
and new queue

append



 Asymptotics Don‟t Say Everything
◦ FingerTree Based Priority Queues can be ~10x 

Slower than a skew heap-based Priority queue 
traditional Priority Queue.

◦ But it is stable so it can be used for fair scheduling) 
and has other nice properties.



 A product of two monoids is a monoid

instance (Monoid a, Monoid b) => Monoid (a,b)

Last a, Sum a, Size, Any, All, even FingerTree v a are all 
good building blocks!

Design for the use of split:
Ideally you want to be able to ask a monotone 
increasing question using split. If your function 
doesn‟t go from False to True and stay True over the 
course of accumulating your monoid left to right over 
the values in your tree, you may not get an answer!



 Data.Sequence has awesome asymptotics
◦ But it uses a lot of space and has some bad constant 

factors.

Data.Vector has great asymptotics, and nice fusion 
properties, but has O(n+m) append.

Rough Concept: 
type Rope a = FingerTree Size (Vector a)
instance Measured Size (Vector a) where

measure = Size . length

See ropes on hackage -- my implementation there uses 
ByteString.



Operation Amortized Bounds

Finger Tree Vector Rope

 cons, snoc: O(1) O(n) O(1)

 append: O(log min(ℓ1, ℓ2)) O(ℓ1+ℓ2) O(log min(ℓ1/c, ℓ2/c)

 split: O(log min(n, ℓ-n)) O(1) O(log min(n/c, (ℓ-n)/c) *

 replicate O(log n) O(n) O(log n)

 index O(log min(n, ℓ-n) O(1) O(log min(n/c, (ℓ-n)/c)

While the asymptotics remain the same, the constant space and access times reduce dramatically. 
c is between 32 and ℓ, depending on how the rope is constructed. 

Furthermore the elements of the rope can be stored unboxed, so the garbage collector doesn‟t 
spend all of its time inspecting every node in your Seq or String!

* Also note, that unless you use append, the complexity of split remains O(1). ;)

Dramatic Wins:

Space Consumption (0.7-30x better)

Garbage Collection Time (same with any unboxed primitive)

Speed (needs benchmarks)



I hope that I have motivated how FingerTrees
work and highlighted some interesting 
applications.

The main areas where FingerTrees shine is in 
their robust asymptotic performance under a 
wide array of usage scenarios. FingerTrees
make a compelling case for being functional 
programming‟s “swiss army knife”. 







 data Unit a = E

 data Red f a = C (f a) | R (f a) a (f a)

 data Layer f a = B (Red f a) a (Red f a)

 data RB f a = Z (f a) | S (RB (Layer f) a)

 type Tree = RB Unit

(A Non-Leafy Red-Black Tree)

http://www.cs.kent.ac.uk/people/staff/smk/redblack/rb.html


