|
Data.Set.Unboxed | Portability | non-portable (type families, view patterns, unboxed tuples) | Stability | experimental | Maintainer | ekmett@gmail.com |
|
|
|
|
|
Description |
An efficient implementation of sets.
Since many function names (but not the type name) clash with
Prelude names, this module is usually imported qualified, e.g.
import Data.Set.Unboxed (USet)
import qualified Data.Set.Unboxed as USet
The implementation of USet is based on size balanced binary trees (or
trees of bounded balance) as described by:
- Stephen Adams, "Efficient sets: a balancing act",
Journal of Functional Programming 3(4):553-562, October 1993,
http://www.swiss.ai.mit.edu/~adams/BB/.
- J. Nievergelt and E.M. Reingold,
"Binary search trees of bounded balance",
SIAM journal of computing 2(1), March 1973.
Note that the implementation is left-biased -- the elements of a
first argument are always preferred to the second, for example in
union or insert. Of course, left-biasing can only be observed
when equality is an equivalence relation instead of structural
equality.
Modified from Data.Set to use type families for automatic unboxing
|
|
Synopsis |
|
class US a where | | | newtype Boxed a = Boxed {} | | (\\) :: (US a, Ord a) => USet a -> USet a -> USet a | | null :: US a => USet a -> Bool | | size :: US a => USet a -> Size | | member :: (US a, Ord a) => a -> USet a -> Bool | | notMember :: (US a, Ord a) => a -> USet a -> Bool | | isSubsetOf :: (US a, Ord a) => USet a -> USet a -> Bool | | isProperSubsetOf :: (US a, Ord a) => USet a -> USet a -> Bool | | empty :: US a => USet a | | singleton :: US a => a -> USet a | | insert :: (US a, Ord a) => a -> USet a -> USet a | | delete :: (US a, Ord a) => a -> USet a -> USet a | | union :: (US a, Ord a) => USet a -> USet a -> USet a | | unions :: (US a, Ord a) => [USet a] -> USet a | | difference :: (US a, Ord a) => USet a -> USet a -> USet a | | intersection :: (US a, Ord a) => USet a -> USet a -> USet a | | filter :: (US a, Ord a) => (a -> Bool) -> USet a -> USet a | | partition :: (US a, Ord a) => (a -> Bool) -> USet a -> (USet a, USet a) | | split :: (US a, Ord a) => a -> USet a -> (USet a, USet a) | | splitMember :: (US a, Ord a) => a -> USet a -> (USet a, Bool, USet a) | | map :: (US a, US b, Ord a, Ord b) => (a -> b) -> USet a -> USet b | | mapMonotonic :: (US a, US b) => (a -> b) -> USet a -> USet b | | fold :: US a => (a -> b -> b) -> b -> USet a -> b | | findMin :: US a => USet a -> a | | findMax :: US a => USet a -> a | | deleteMin :: US a => USet a -> USet a | | deleteMax :: US a => USet a -> USet a | | deleteFindMin :: US a => USet a -> (a, USet a) | | deleteFindMax :: US a => USet a -> (a, USet a) | | maxView :: US a => USet a -> Maybe (a, USet a) | | minView :: US a => USet a -> Maybe (a, USet a) | | elems :: US a => USet a -> [a] | | toList :: US a => USet a -> [a] | | fromList :: (US a, Ord a) => [a] -> USet a | | toAscList :: US a => USet a -> [a] | | fromAscList :: (US a, Eq a) => [a] -> USet a | | fromDistinctAscList :: US a => [a] -> USet a | | showTree :: (US a, Show a) => USet a -> String | | showTreeWith :: (US a, Show a) => Bool -> Bool -> USet a -> String | | valid :: (US a, Ord a) => USet a -> Bool |
|
|
|
Set type
|
|
|
| Associated Types | | | Methods | | O(1). The number of elements in the set.
| | | O(1). Is this the empty set?
|
| | Instances | US Char | US Double | US Float | US Int | US Int8 | US Int16 | US Int32 | US Int64 | US Integer | US Word8 | US Word16 | US Word32 | US Word64 | US (Boxed a) | US ((,) Char Char) | US ((,) Double Double) | US ((,) Float Float) | US ((,) Int Int) | US ((,) Int8 Int8) | US ((,) Int16 Int16) | US ((,) Int32 Int32) | US ((,) Int64 Int64) | US ((,) Integer Integer) | US ((,) Word8 Word8) | US ((,) Word16 Word16) | US ((,) Word32 Word32) | US ((,) Word64 Word64) | US ((,) (Boxed a) (Boxed b)) | US ((,,) Char Char Char) | US ((,,) Double Double Double) | US ((,,) Float Float Float) | US ((,,) Int Int Int) | US ((,,) Int8 Int8 Int8) | US ((,,) Int16 Int16 Int16) | US ((,,) Int32 Int32 Int32) | US ((,,) Int64 Int64 Int64) | US ((,,) Integer Integer Integer) | US ((,,) Word8 Word8 Word8) | US ((,,) Word16 Word16 Word16) | US ((,,) Word32 Word32 Word32) | US ((,,) Word64 Word64 Word64) | US ((,,) (Boxed a) (Boxed b) (Boxed c)) | US ((,,,) Char Char Char Char) | US ((,,,) Double Double Double Double) | US ((,,,) Float Float Float Float) | US ((,,,) Int Int Int Int) | US ((,,,) Int8 Int8 Int8 Int8) | US ((,,,) Int16 Int16 Int16 Int16) | US ((,,,) Int32 Int32 Int32 Int32) | US ((,,,) Int64 Int64 Int64 Int64) | US ((,,,) Integer Integer Integer Integer) | US ((,,,) Word8 Word8 Word8 Word8) | US ((,,,) Word16 Word16 Word16 Word16) | US ((,,,) Word32 Word32 Word32 Word32) | US ((,,,) Word64 Word64 Word64 Word64) | US ((,,,) (Boxed a) (Boxed b) (Boxed c) (Boxed d)) | US ((,,,,) Char Char Char Char Char) | US ((,,,,) Double Double Double Double Double) | US ((,,,,) Float Float Float Float Float) | US ((,,,,) Int Int Int Int Int) | US ((,,,,) Int8 Int8 Int8 Int8 Int8) | US ((,,,,) Int16 Int16 Int16 Int16 Int16) | US ((,,,,) Int32 Int32 Int32 Int32 Int32) | US ((,,,,) Int64 Int64 Int64 Int64 Int64) | US ((,,,,) Integer Integer Integer Integer Integer) | US ((,,,,) Word8 Word8 Word8 Word8 Word8) | US ((,,,,) Word16 Word16 Word16 Word16 Word16) | US ((,,,,) Word32 Word32 Word32 Word32 Word32) | US ((,,,,) Word64 Word64 Word64 Word64 Word64) | US ((,,,,) (Boxed a) (Boxed b) (Boxed c) (Boxed d) (Boxed e)) | US ((,,,,,) Char Char Char Char Char Char) | US ((,,,,,) Double Double Double Double Double Double) | US ((,,,,,) Float Float Float Float Float Float) | US ((,,,,,) Int Int Int Int Int Int) | US ((,,,,,) Int8 Int8 Int8 Int8 Int8 Int8) | US ((,,,,,) Int16 Int16 Int16 Int16 Int16 Int16) | US ((,,,,,) Int32 Int32 Int32 Int32 Int32 Int32) | US ((,,,,,) Int64 Int64 Int64 Int64 Int64 Int64) | US ((,,,,,) Integer Integer Integer Integer Integer Integer) | US ((,,,,,) Word8 Word8 Word8 Word8 Word8 Word8) | US ((,,,,,) Word16 Word16 Word16 Word16 Word16 Word16) | US ((,,,,,) Word32 Word32 Word32 Word32 Word32 Word32) | US ((,,,,,) Word64 Word64 Word64 Word64 Word64 Word64) | US ((,,,,,) (Boxed a) (Boxed b) (Boxed c) (Boxed d) (Boxed e) (Boxed f)) | US ((,,,,,,) Char Char Char Char Char Char Char) | US ((,,,,,,) Double Double Double Double Double Double Double) | US ((,,,,,,) Float Float Float Float Float Float Float) | US ((,,,,,,) Int Int Int Int Int Int Int) | US ((,,,,,,) Int8 Int8 Int8 Int8 Int8 Int8 Int8) | US ((,,,,,,) Int16 Int16 Int16 Int16 Int16 Int16 Int16) | US ((,,,,,,) Int32 Int32 Int32 Int32 Int32 Int32 Int32) | US ((,,,,,,) Int64 Int64 Int64 Int64 Int64 Int64 Int64) | US ((,,,,,,) Integer Integer Integer Integer Integer Integer Integer) | US ((,,,,,,) Word8 Word8 Word8 Word8 Word8 Word8 Word8) | US ((,,,,,,) Word16 Word16 Word16 Word16 Word16 Word16 Word16) | US ((,,,,,,) Word32 Word32 Word32 Word32 Word32 Word32 Word32) | US ((,,,,,,) Word64 Word64 Word64 Word64 Word64 Word64 Word64) | US ((,,,,,,) (Boxed a) (Boxed b) (Boxed c) (Boxed d) (Boxed e) (Boxed f) (Boxed g)) | US ((,,,,,,,) Char Char Char Char Char Char Char Char) | US ((,,,,,,,) Double Double Double Double Double Double Double Double) | US ((,,,,,,,) Float Float Float Float Float Float Float Float) | US ((,,,,,,,) Int Int Int Int Int Int Int Int) | US ((,,,,,,,) Int8 Int8 Int8 Int8 Int8 Int8 Int8 Int8) | US ((,,,,,,,) Int16 Int16 Int16 Int16 Int16 Int16 Int16 Int16) | US ((,,,,,,,) Int32 Int32 Int32 Int32 Int32 Int32 Int32 Int32) | US ((,,,,,,,) Int64 Int64 Int64 Int64 Int64 Int64 Int64 Int64) | US ((,,,,,,,) Integer Integer Integer Integer Integer Integer Integer Integer) | US ((,,,,,,,) Word8 Word8 Word8 Word8 Word8 Word8 Word8 Word8) | US ((,,,,,,,) Word16 Word16 Word16 Word16 Word16 Word16 Word16 Word16) | US ((,,,,,,,) Word32 Word32 Word32 Word32 Word32 Word32 Word32 Word32) | US ((,,,,,,,) Word64 Word64 Word64 Word64 Word64 Word64 Word64 Word64) | US ((,,,,,,,) (Boxed a) (Boxed b) (Boxed c) (Boxed d) (Boxed e) (Boxed f) (Boxed g) (Boxed h)) | US ((,,,,,,,,) Char Char Char Char Char Char Char Char Char) | US ((,,,,,,,,) Double Double Double Double Double Double Double Double Double) | US ((,,,,,,,,) Float Float Float Float Float Float Float Float Float) | US ((,,,,,,,,) Int Int Int Int Int Int Int Int Int) | US ((,,,,,,,,) Int8 Int8 Int8 Int8 Int8 Int8 Int8 Int8 Int8) | US ((,,,,,,,,) Int16 Int16 Int16 Int16 Int16 Int16 Int16 Int16 Int16) | US ((,,,,,,,,) Int32 Int32 Int32 Int32 Int32 Int32 Int32 Int32 Int32) | US ((,,,,,,,,) Int64 Int64 Int64 Int64 Int64 Int64 Int64 Int64 Int64) | US ((,,,,,,,,) Integer Integer Integer Integer Integer Integer Integer Integer Integer) | US ((,,,,,,,,) Word8 Word8 Word8 Word8 Word8 Word8 Word8 Word8 Word8) | US ((,,,,,,,,) Word16 Word16 Word16 Word16 Word16 Word16 Word16 Word16 Word16) | US ((,,,,,,,,) Word32 Word32 Word32 Word32 Word32 Word32 Word32 Word32 Word32) | US ((,,,,,,,,) Word64 Word64 Word64 Word64 Word64 Word64 Word64 Word64 Word64) | US ((,,,,,,,,) (Boxed a) (Boxed b) (Boxed c) (Boxed d) (Boxed e) (Boxed f) (Boxed g) (Boxed h) (Boxed i)) |
|
|
|
|
Constructors | | Instances | |
|
|
Operators
|
|
|
O(n+m). See difference.
|
|
Query
|
|
|
O(1). Is this the empty set?
|
|
|
O(1). The number of elements in the set.
|
|
|
O(log n). Is the element in the set?
|
|
|
O(log n). Is the element not in the set?
|
|
|
O(n+m). Is this a subset?
(s1 isSubsetOf s2) tells whether s1 is a subset of s2.
|
|
|
O(n+m). Is this a proper subset? (ie. a subset but not equal).
|
|
Construction
|
|
|
O(1). The empty set.
|
|
|
O(1). Create a singleton set.
|
|
|
O(log n). Insert an element in a set.
If the set already contains an element equal to the given value,
it is replaced with the new value.
|
|
|
O(log n). Delete an element from a set.
|
|
Combine
|
|
|
O(n+m). The union of two sets, preferring the first set when
equal elements are encountered.
The implementation uses the efficient hedge-union algorithm.
Hedge-union is more efficient on (bigset union smallset).
|
|
|
The union of a list of sets: (unions == foldl union empty).
|
|
|
O(n+m). Difference of two sets.
The implementation uses an efficient hedge algorithm comparable with hedge-union.
|
|
|
O(n+m). The intersection of two sets.
Elements of the result come from the first set, so for example
import qualified Data.Set as S
data AB = A | B deriving Show
instance Ord AB where compare _ _ = EQ
instance Eq AB where _ == _ = True
main = print (S.singleton A `S.intersection` S.singleton B,
S.singleton B `S.intersection` S.singleton A)
prints (fromList [A],fromList [B]).
|
|
Filter
|
|
|
O(n). Filter all elements that satisfy the predicate.
|
|
|
O(n). Partition the set into two sets, one with all elements that satisfy
the predicate and one with all elements that don't satisfy the predicate.
See also split.
|
|
|
O(log n). The expression (split x set) is a pair (set1,set2)
where set1 comprises the elements of set less than x and set2
comprises the elements of set greater than x.
|
|
|
O(log n). Performs a split but also returns whether the pivot
element was found in the original set.
|
|
Map
|
|
|
O(n*log n).
map f s is the set obtained by applying f to each element of s.
It's worth noting that the size of the result may be smaller if,
for some (x,y), x /= y && f x == f y
|
|
|
O(n). The
mapMonotonic f s == map f s, but works only when f is monotonic.
The precondition is not checked.
Semi-formally, we have:
and [x < y ==> f x < f y | x <- ls, y <- ls]
==> mapMonotonic f s == map f s
where ls = toList s
|
|
Fold
|
|
|
O(n). Fold over the elements of a set in an unspecified order.
|
|
Min/Max
|
|
|
O(log n). The minimal element of a set.
|
|
|
O(log n). The maximal element of a set.
|
|
|
O(log n). Delete the minimal element.
|
|
|
O(log n). Delete the maximal element.
|
|
|
O(log n). Delete and find the minimal element.
deleteFindMin set = (findMin set, deleteMin set)
|
|
|
O(log n). Delete and find the maximal element.
deleteFindMax set = (findMax set, deleteMax set)
|
|
|
O(log n). Retrieves the maximal key of the set, and the set
stripped of that element, or Nothing if passed an empty set.
|
|
|
O(log n). Retrieves the minimal key of the set, and the set
stripped of that element, or Nothing if passed an empty set.
|
|
Conversion
|
|
List
|
|
|
O(n). The elements of a set.
|
|
|
O(n). Convert the set to a list of elements.
|
|
|
O(n*log n). Create a set from a list of elements.
|
|
Ordered list
|
|
|
O(n). Convert the set to an ascending list of elements.
|
|
|
O(n). Build a set from an ascending list in linear time.
The precondition (input list is ascending) is not checked.
|
|
|
O(n). Build a set from an ascending list of distinct elements in linear time.
The precondition (input list is strictly ascending) is not checked.
|
|
Debugging
|
|
|
O(n). Show the tree that implements the set. The tree is shown
in a compressed, hanging format.
|
|
|
O(n). The expression (showTreeWith hang wide map) shows
the tree that implements the set. If hang is
True, a hanging tree is shown otherwise a rotated tree is shown. If
wide is True, an extra wide version is shown.
Set> putStrLn $ showTreeWith True False $ fromDistinctAscList [1..5]
4
+--2
| +--1
| +--3
+--5
Set> putStrLn $ showTreeWith True True $ fromDistinctAscList [1..5]
4
|
+--2
| |
| +--1
| |
| +--3
|
+--5
Set> putStrLn $ showTreeWith False True $ fromDistinctAscList [1..5]
+--5
|
4
|
| +--3
| |
+--2
|
+--1
|
|
|
O(n). Test if the internal set structure is valid.
|
|
Produced by Haddock version 2.3.0 |